diff options
| -rw-r--r-- | Data/Vector.agda | 82 |
1 files changed, 82 insertions, 0 deletions
diff --git a/Data/Vector.agda b/Data/Vector.agda new file mode 100644 index 0000000..052f624 --- /dev/null +++ b/Data/Vector.agda @@ -0,0 +1,82 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Vector where + +open import Data.Nat.Base using (ℕ) +open import Data.Vec.Functional using (Vector; head; tail; []; removeAt; map) public +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) +open import Function.Base using (∣_⟩-_; _∘_) +open import Data.Fin.Base using (Fin; toℕ) +open ℕ +open Fin + +foldl + : ∀ {n : ℕ} {A : Set} (B : ℕ → Set) + → (∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))) + → B zero + → Vector A n + → B n +foldl {zero} B ⊕ e v = e +foldl {suc n} B ⊕ e v = foldl (B ∘ suc) ⊕ (⊕ e (head v)) (tail v) + +foldl-cong + : {n : ℕ} {A : Set} + (B : ℕ → Set) + {f g : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))} + → (∀ {k} → ∀ x y → f {k} x y ≡ g {k} x y) + → (e : B zero) + → (v : Vector A n) + → foldl B f e v ≡ foldl B g e v +foldl-cong {zero} B f≗g e v = ≡.refl +foldl-cong {suc n} B {g = g} f≗g e v rewrite (f≗g e (head v)) = foldl-cong (B ∘ suc) f≗g (g e (head v)) (tail v) + +foldl-cong-arg + : {n : ℕ} {A : Set} + (B : ℕ → Set) + (f : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))) + → (e : B zero) + → {v w : Vector A n} + → v ≗ w + → foldl B f e v ≡ foldl B f e w +foldl-cong-arg {zero} B f e v≗w = ≡.refl +foldl-cong-arg {suc n} B f e {w = w} v≗w rewrite v≗w zero = foldl-cong-arg (B ∘ suc) f (f e (head w)) (v≗w ∘ suc) + +foldl-map + : {n : ℕ} {A : ℕ → Set} {B C : Set} + (f : ∀ {k : Fin n} → A (toℕ k) → B → A (suc (toℕ k))) + (g : C → B) + (x : A zero) + (xs : Vector C n) + → foldl A f x (map g xs) + ≡ foldl A (∣ f ⟩- g) x xs +foldl-map {zero} f g e xs = ≡.refl +foldl-map {suc n} f g e xs = foldl-map f g (f e (g (head xs))) (tail xs) + +foldl-fusion + : {n : ℕ} + {A : Set} {B C : ℕ → Set} + (h : {k : ℕ} → B k → C k) + → {f : {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))} {d : B zero} + → {g : {k : Fin n} → C (toℕ k) → A → C (suc (toℕ k))} {e : C zero} + → (h d ≡ e) + → ({k : Fin n} (b : B (toℕ k)) (x : A) → h (f {k} b x) ≡ g (h b) x) + → h ∘ foldl B f d ≗ foldl C g e +foldl-fusion {zero} _ base _ _ = base +foldl-fusion {suc n} {A} h {f} {d} {g} {e} base fuse xs = foldl-fusion h eq fuse (tail xs) + where + x₀ : A + x₀ = head xs + open ≡.≡-Reasoning + eq : h (f d x₀) ≡ g e x₀ + eq = begin + h (f d x₀) ≡⟨ fuse d x₀ ⟩ + g (h d) x₀ ≡⟨ ≡.cong-app (≡.cong g base) x₀ ⟩ + g e x₀ ∎ + +foldl-[] + : {A : Set} + (B : ℕ → Set) + (f : {k : Fin 0} → B (toℕ k) → A → B (suc (toℕ k))) + {e : B 0} + → foldl B f e [] ≡ e +foldl-[] _ _ = ≡.refl |
