aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--DecorationFunctor/Hypergraph.agda14
-rw-r--r--DecorationFunctor/Hypergraph/Labeled.agda749
2 files changed, 757 insertions, 6 deletions
diff --git a/DecorationFunctor/Hypergraph.agda b/DecorationFunctor/Hypergraph.agda
index a4e08df..5cd83f3 100644
--- a/DecorationFunctor/Hypergraph.agda
+++ b/DecorationFunctor/Hypergraph.agda
@@ -26,7 +26,7 @@ open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomple
open import Data.Empty using (⊥-elim)
open import Data.Fin using (#_)
open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; Fin′; toℕ; cast)
-open import Data.Fin.Patterns using (0F; 1F)
+open import Data.Fin.Patterns using (0F; 1F; 2F)
open import Data.Fin.Permutation using (lift₀)
open import Data.Fin.Properties using (splitAt-join; join-splitAt; cast-is-id; cast-trans; toℕ-cast; subst-is-cast; splitAt-↑ˡ; splitAt-↑ʳ; splitAt⁻¹-↑ˡ; ↑ˡ-injective)
open import Data.Nat using (ℕ; _+_)
@@ -629,9 +629,11 @@ and-gate = record
and-graph : Hypergraph 3
and-graph = record
{ h = 1
- ; a = λ { 0F → 3 }
- ; j = λ { 0F 0F → # 0
- ; 0F 1F → # 1
- ; 0F 2F → # 2
- }
+ ; a = λ { 0F → 2 }
+ ; j = λ { 0F → edge-0-nodes }
}
+ where
+ edge-0-nodes : Fin 3 → Fin 3
+ edge-0-nodes 0F = # 0
+ edge-0-nodes 1F = # 1
+ edge-0-nodes 2F = # 2
diff --git a/DecorationFunctor/Hypergraph/Labeled.agda b/DecorationFunctor/Hypergraph/Labeled.agda
new file mode 100644
index 0000000..d8f6e64
--- /dev/null
+++ b/DecorationFunctor/Hypergraph/Labeled.agda
@@ -0,0 +1,749 @@
+{-# OPTIONS --without-K --safe #-}
+
+module DecorationFunctor.Hypergraph.Labeled where
+
+import Categories.Morphism as Morphism
+
+open import Categories.Category.BinaryProducts using (module BinaryProducts)
+open import Categories.Category.Cartesian using (Cartesian)
+open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts)
+open import Categories.Category.Core using (Category)
+open import Categories.Category.Instance.Nat using (Nat-Cocartesian)
+open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Category.Instance.SingletonSet using (SingletonSetoid)
+open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian)
+open import Categories.Category.Product using (_⁂_)
+open import Categories.Functor using () renaming (_∘F_ to _∘′_)
+open import Categories.Functor.Core using (Functor)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×)
+open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete)
+
+open import Data.Empty using (⊥-elim)
+open import Data.Fin using (#_)
+open import Data.Fin.Base using (Fin; splitAt; join; zero; suc; _↑ˡ_; _↑ʳ_; Fin′; cast)
+open import Data.Fin.Patterns using (0F; 1F)
+open import Data.Fin.Permutation using (lift₀)
+open import Data.Fin.Properties
+ using
+ ( splitAt-join ; join-splitAt
+ ; cast-is-id ; cast-trans ; subst-is-cast
+ ; splitAt-↑ˡ ; splitAt-↑ʳ
+ ; splitAt⁻¹-↑ˡ ; ↑ˡ-injective
+ )
+open import Data.Nat using (ℕ; _+_)
+open import Data.Product.Base using (_,_; Σ)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (×-setoid)
+open import Data.Sum.Base using (_⊎_; map; inj₁; inj₂; swap; map₂) renaming ([_,_]′ to [_,_])
+open import Data.Sum.Properties using (map-map; [,]-map; [,]-∘; [-,]-cong; [,-]-cong; [,]-cong; map-cong; swap-involutive)
+open import Data.Unit using (tt)
+open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid)
+
+open import Function.Base using (_∘_; id; const; case_of_; case_returning_of_)
+open import Function.Bundles using (Func; Inverse; _↔_; mk↔)
+open import Function.Construct.Composition using (_↔-∘_)
+open import Function.Construct.Identity using (↔-id)
+open import Function.Construct.Symmetry using (↔-sym)
+
+open import Level using (0ℓ; lift)
+
+open import Relation.Binary.Bundles using (Setoid)
+open import Relation.Binary.PropositionalEquality using (_≗_)
+open import Relation.Binary.PropositionalEquality.Core using (_≡_; erefl; refl; sym; trans; cong; cong₂; subst; cong-app)
+open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence; module ≡-Reasoning; dcong; dcong₂; subst-∘; subst-subst; sym-cong; subst-subst-sym; trans-cong; cong-∘; trans-reflʳ)
+open import Relation.Nullary.Negation.Core using (¬_)
+
+open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products)
+open Cocartesian Nat-Cocartesian using (coproducts)
+open FinitelyCocompleteCategory Nat-FinitelyCocomplete
+ using ()
+ renaming (symmetricMonoidalCategory to Nat-smc)
+open Morphism (Setoids 0ℓ 0ℓ) using (_≅_)
+open Lax using (SymmetricMonoidalFunctor)
+
+open BinaryProducts products using (-×-)
+open BinaryCoproducts coproducts using (-+-) renaming (+-assoc to Nat-+-assoc)
+
+
+data Gate : ℕ → Set where
+ ZERO : Gate 1
+ ONE : Gate 1
+ NOT : Gate 2
+ AND : Gate 3
+ OR : Gate 3
+ XOR : Gate 3
+ NAND : Gate 3
+ NOR : Gate 3
+ XNOR : Gate 3
+
+cast-gate : {e e′ : ℕ} → .(e ≡ e′) → Gate e → Gate e′
+cast-gate {1} {1} eq g = g
+cast-gate {2} {2} eq g = g
+cast-gate {3} {3} eq g = g
+
+cast-gate-trans
+ : {m n o : ℕ}
+ → .(eq₁ : m ≡ n)
+ .(eq₂ : n ≡ o)
+ (g : Gate m)
+ → cast-gate eq₂ (cast-gate eq₁ g) ≡ cast-gate (trans eq₁ eq₂) g
+cast-gate-trans {1} {1} {1} eq₁ eq₂ g = refl
+cast-gate-trans {2} {2} {2} eq₁ eq₂ g = refl
+cast-gate-trans {3} {3} {3} eq₁ eq₂ g = refl
+
+cast-gate-is-id : {m : ℕ} .(eq : m ≡ m) (g : Gate m) → cast-gate eq g ≡ g
+cast-gate-is-id {1} eq g = refl
+cast-gate-is-id {2} eq g = refl
+cast-gate-is-id {3} eq g = refl
+
+subst-is-cast-gate : {m n : ℕ} (eq : m ≡ n) (g : Gate m) → subst Gate eq g ≡ cast-gate eq g
+subst-is-cast-gate refl g = sym (cast-gate-is-id refl g)
+
+record Hypergraph (v : ℕ) : Set where
+
+ field
+ h : ℕ
+ a : Fin h → ℕ
+
+ arity : Fin h → ℕ
+ arity = ℕ.suc ∘ a
+
+ field
+ j : (e : Fin h) → Fin (arity e) → Fin v
+ l : (e : Fin h) → Gate (arity e)
+
+record Hypergraph-same {n : ℕ} (H H′ : Hypergraph n) : Set where
+
+ open Hypergraph H public
+ open Hypergraph H′ renaming (h to h′; a to a′; arity to arity′; j to j′; l to l′) public
+
+ field
+ ↔h : Fin h ↔ Fin h′
+
+ open Inverse ↔h public
+
+ field
+ ≗a : a ≗ a′ ∘ to
+
+ ≗arity : arity ≗ arity′ ∘ to
+ ≗arity e = cong ℕ.suc (≗a e)
+
+ field
+ ≗j : (e : Fin h)
+ (i : Fin (arity e))
+ → j e i
+ ≡ j′ (to e) (cast (≗arity e) i)
+ ≗l : (e : Fin h)
+ → l e
+ ≡ cast-gate (sym (≗arity e)) (l′ (to e))
+
+private
+
+ variable
+ n n′ m m′ o : ℕ
+ H H′ H″ H₁ H₁′ : Hypergraph n
+ H₂ H₂′ : Hypergraph m
+ H₃ : Hypergraph o
+
+Hypergraph-same-refl : Hypergraph-same H H
+Hypergraph-same-refl {_} {H} = record
+ { ↔h = ↔-id (Fin h)
+ ; ≗a = cong a ∘ erefl
+ ; ≗j = λ e i → cong (j e) (sym (cast-is-id refl i))
+ ; ≗l = λ { e → sym (cast-gate-is-id refl (l e)) }
+ }
+ where
+ open Hypergraph H
+
+sym-sym : {A : Set} {x y : A} (p : x ≡ y) → sym (sym p) ≡ p
+sym-sym refl = refl
+
+Hypergraph-same-sym : Hypergraph-same H H′ → Hypergraph-same H′ H
+Hypergraph-same-sym {V} {H} {H′} ≡H = record
+ { ↔h = ↔-sym ↔h
+ ; ≗a = sym ∘ a∘from≗a′
+ ; ≗j = ≗j′
+ ; ≗l = ≗l′
+ }
+ where
+ open Hypergraph-same ≡H
+ open ≡-Reasoning
+ a∘from≗a′ : a ∘ from ≗ a′
+ a∘from≗a′ x = begin
+ (a ∘ from) x ≡⟨ (≗a ∘ from) x ⟩
+ (a′ ∘ to ∘ from) x ≡⟨ (cong a′ ∘ inverseˡ ∘ erefl ∘ from) x ⟩
+ a′ x ∎
+ id≗to∘from : id ≗ to ∘ from
+ id≗to∘from e = sym (inverseˡ refl)
+ ≗arity′ : arity′ ≗ arity ∘ from
+ ≗arity′ e = cong ℕ.suc (sym (a∘from≗a′ e))
+ ≗arity- : arity′ ≗ arity′ ∘ to ∘ from
+ ≗arity- e = cong arity′ (id≗to∘from e)
+
+ ≗j′ : (e : Fin h′) (i : Fin (arity′ e)) → j′ e i ≡ j (from e) (cast (≗arity′ e) i)
+ ≗j′ e i = begin
+ j′ e i ≡⟨ dcong₂ j′ (id≗to∘from e) (subst-∘ (id≗to∘from e)) ⟩
+ j′ (to (from e)) (subst Fin (cong arity′ (id≗to∘from e)) i) ≡⟨ cong (j′ (to (from e))) (subst-is-cast (cong arity′ (id≗to∘from e)) i) ⟩
+ j′ (to (from e)) (cast (cong arity′ (id≗to∘from e)) i) ≡⟨⟩
+ j′ (to (from e)) (cast (trans (≗arity′ e) (≗arity (from e))) i) ≡⟨ cong (j′ (to (from e))) (cast-trans (≗arity′ e) (≗arity (from e)) i) ⟨
+ j′ (to (from e)) (cast (≗arity (from e)) (cast (≗arity′ e) i)) ≡⟨ ≗j (from e) (cast (≗arity′ e) i) ⟨
+ j (from e) (cast (≗arity′ e) i) ∎
+
+ ≗l′ : (e : Fin h′) → l′ e ≡ cast-gate (sym (cong ℕ.suc (sym (a∘from≗a′ e)))) (l (from e))
+ ≗l′ e = begin
+ l′ e ≡⟨ dcong l′ (sym (id≗to∘from e)) ⟨
+ subst (Gate ∘ arity′) (sym (id≗to∘from e)) (l′ (to (from e))) ≡⟨ subst-∘ (sym (id≗to∘from e)) ⟩
+ subst Gate (cong arity′ (sym (id≗to∘from e))) (l′ (to (from e))) ≡⟨ subst-is-cast-gate (cong arity′ (sym (id≗to∘from e))) (l′ (to (from e))) ⟩
+ cast-gate _ (l′ (to (from e))) ≡⟨ cast-gate-trans _ (sym (cong ℕ.suc (sym (a∘from≗a′ e)))) (l′ (to (from e))) ⟨
+ cast-gate (sym (cong ℕ.suc (sym (a∘from≗a′ e)))) (cast-gate _ (l′ (to (from e)))) ≡⟨ cong (cast-gate (sym (cong ℕ.suc (sym (a∘from≗a′ e))))) (≗l (from e)) ⟨
+ cast-gate (sym (cong ℕ.suc (sym (a∘from≗a′ e)))) (l (from e)) ∎
+
+Hypergraph-same-trans : Hypergraph-same H H′ → Hypergraph-same H′ H″ → Hypergraph-same H H″
+Hypergraph-same-trans ≡H₁ ≡H₂ = record
+ { ↔h = ↔h ≡H₂ ↔-∘ ↔h ≡H₁
+ ; ≗a = λ { x → trans (≗a ≡H₁ x) (≗a ≡H₂ (to (↔h ≡H₁) x)) }
+ ; ≗j = λ { e i → trans (≗j ≡H₁ e i) (≗j₂ e i) }
+ ; ≗l = λ { e → trans (≗l ≡H₁ e) (≗l₂ e) }
+ }
+ where
+ open Hypergraph-same
+ open Inverse
+ open ≡-Reasoning
+ ≗j₂ : (e : Fin (h ≡H₁))
+ (i : Fin (arity ≡H₁ e))
+ → j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i)
+ ≡ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i)
+ ≗j₂ e i = begin
+ j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i)
+ ≡⟨ ≗j ≡H₂ (to (↔h ≡H₁) e) (cast (≗arity ≡H₁ e) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (≗arity ≡H₂ (to (↔h ≡H₁) e)) (cast (≗arity ≡H₁ e) i))
+ ≡⟨ cong (j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e))) (cast-trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e)) i) ⟩
+ j′ ≡H₂ (to (↔h ≡H₂) (to (↔h ≡H₁) e)) (cast (trans (≗arity ≡H₁ e) (≗arity ≡H₂ (to (↔h ≡H₁) e))) i) ∎
+ ≗l₂ : (e : Fin (h ≡H₁)) → cast-gate _ (l′ ≡H₁ (to ≡H₁ e)) ≡ cast-gate _ (l′ ≡H₂ (to ≡H₂ (to ≡H₁ e)))
+ ≗l₂ e = trans (cong (cast-gate _) (≗l ≡H₂ (to ≡H₁ e))) (cast-gate-trans _ (sym (≗arity ≡H₁ e)) (l′ ≡H₂ (to ≡H₂ (to ≡H₁ e))))
+
+Hypergraph-setoid : ℕ → Setoid 0ℓ 0ℓ
+Hypergraph-setoid p = record
+ { Carrier = Hypergraph p
+ ; _≈_ = Hypergraph-same
+ ; isEquivalence = record
+ { refl = Hypergraph-same-refl
+ ; sym = Hypergraph-same-sym
+ ; trans = Hypergraph-same-trans
+ }
+ }
+
+map-nodes : (Fin n → Fin m) → Hypergraph n → Hypergraph m
+map-nodes f H = record
+ { h = h
+ ; a = a
+ ; j = λ e i → f (j e i)
+ ; l = l
+ }
+ where
+ open Hypergraph H
+
+Hypergraph-same-cong
+ : (f : Fin n → Fin m)  
+ → Hypergraph-same H H′
+ → Hypergraph-same (map-nodes f H) (map-nodes f H′)
+Hypergraph-same-cong f ≡H = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ { e i → cong f (≗j e i) }
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same ≡H
+
+Hypergraph-Func : (Fin n → Fin m) → Func (Hypergraph-setoid n) (Hypergraph-setoid m)
+Hypergraph-Func f = record
+ { to = map-nodes f
+ ; cong = Hypergraph-same-cong f
+ }
+
+F-resp-≈
+ : {f g : Fin n → Fin m}
+ → f ≗ g
+ → Hypergraph-same (map-nodes f H) (map-nodes g H)
+F-resp-≈ {g = g} f≗g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ { e i → trans (f≗g (j e i)) (cong g (≗j e i)) }
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+homomorphism
+ : (f : Fin n → Fin m)
+ → (g : Fin m → Fin o)
+ → Hypergraph-same (map-nodes (g ∘ f) H) (map-nodes g (map-nodes f H))
+homomorphism {n} {m} {o} {H} f g = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = λ e i → cong (g ∘ f) (≗j e i)
+ ; ≗l = ≗l
+ }
+ where
+ open Hypergraph-same Hypergraph-same-refl
+
+F : Functor Nat (Setoids 0ℓ 0ℓ)
+F = record
+ { F₀ = Hypergraph-setoid
+ ; F₁ = Hypergraph-Func
+ ; identity = λ { {n} {H} → Hypergraph-same-refl {H = H} }
+ ; homomorphism = λ { {f = f} {g = g} → homomorphism f g }
+ ; F-resp-≈ = λ f≗g → F-resp-≈ f≗g
+ }
+
+-- monoidal structure
+
+empty-hypergraph : Hypergraph 0
+empty-hypergraph = record
+ { h = 0
+ ; a = λ ()
+ ; j = λ ()
+ ; l = λ ()
+ }
+
+ε : Func (SingletonSetoid {0ℓ} {0ℓ}) (Hypergraph-setoid 0)
+ε = record
+ { to = const empty-hypergraph
+ ; cong = const Hypergraph-same-refl
+ }
+
+module _ (H₁ : Hypergraph n) (H₂ : Hypergraph m) where
+ private
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ j+j : (e : Fin (H₁.h + H₂.h))
+ → Fin (ℕ.suc ([ H₁.a , H₂.a ] (splitAt H₁.h e)))
+ → Fin (n + m)
+ j+j e i with splitAt H₁.h e
+ ... | inj₁ e₁ = H₁.j e₁ i ↑ˡ m
+ ... | inj₂ e₂ = n ↑ʳ H₂.j e₂ i
+ l+l : (e : Fin (H₁.h + H₂.h)) → Gate (ℕ.suc ([ H₁.a , H₂.a ] (splitAt H₁.h e)))
+ l+l e with splitAt H₁.h e
+ ... | inj₁ e₁ = H₁.l e₁
+ ... | inj₂ e₂ = H₂.l e₂
+
+together : Hypergraph n → Hypergraph m → Hypergraph (n + m)
+together {n} {m} H₁ H₂ = record
+ { h = h H₁ + h H₂
+ ; a = [ a H₁ , a H₂ ] ∘ splitAt (h H₁)
+ ; j = j+j H₁ H₂
+ ; l = l+l H₁ H₂
+ }
+ where
+ open Hypergraph
+
++-resp-↔
+ : {n n′ m m′ : ℕ}
+ → Fin n ↔ Fin n′
+ → Fin m ↔ Fin m′
+ → Fin (n + m) ↔ Fin (n′ + m′)
++-resp-↔ {n} {n′} {m} {m′} ↔n ↔m = record
+ { to = join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n
+ ; from = join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′
+ ; to-cong = cong (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n)
+ ; from-cong = cong (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′)
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ module ↔n = Inverse ↔n
+ module ↔m = Inverse ↔m
+ open ≡-Reasoning
+ to∘from : join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ≗ id
+ to∘from x = begin
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ∘ join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′ ∘ map ↔n.to ↔m.to)
+ (splitAt-join n m (map ↔n.from ↔m.from (splitAt n′ x))) ⟩
+ (join n′ m′ ∘ map ↔n.to ↔m.to ∘ map ↔n.from ↔m.from ∘ splitAt n′) x
+ ≡⟨ cong (join n′ m′) (map-map (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map (↔n.to ∘ ↔n.from) (↔m.to ∘ ↔m.from) ∘ splitAt n′) x
+ ≡⟨ cong
+ (join n′ m′)
+ (map-cong
+ (λ _ → ↔n.inverseˡ refl)
+ (λ _ → ↔m.inverseˡ refl)
+ (splitAt n′ x)) ⟩
+ (join n′ m′ ∘ map id id ∘ splitAt n′) x ≡⟨ [,]-map (splitAt n′ x) ⟩
+ (join n′ m′ ∘ splitAt n′) x ≡⟨ join-splitAt n′ m′ x ⟩
+ x ∎
+ from∘to : join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ map ↔n.from ↔m.from ∘ splitAt n′ ∘ join n′ m′ ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m ∘ map ↔n.from ↔m.from)
+ (splitAt-join n′ m′ (map ↔n.to ↔m.to (splitAt n x))) ⟩
+ (join n m ∘ map ↔n.from ↔m.from ∘ map ↔n.to ↔m.to ∘ splitAt n) x
+ ≡⟨ cong (join n m) (map-map (splitAt n x)) ⟩
+ (join n m ∘ map (↔n.from ∘ ↔n.to) (↔m.from ∘ ↔m.to) ∘ splitAt n) x
+ ≡⟨ cong
+ (join n m)
+ (map-cong
+ (λ _ → ↔n.inverseʳ refl)
+ (λ _ → ↔m.inverseʳ refl)
+ (splitAt n x)) ⟩
+ (join n m ∘ map id id ∘ splitAt n) x ≡⟨ [,]-map (splitAt n x) ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+together-resp-same
+ : Hypergraph-same H₁ H₁′
+ → Hypergraph-same H₂ H₂′
+ → Hypergraph-same (together H₁ H₂) (together H₁′ H₂′)
+together-resp-same {n} {H₁} {H₁′} {m} {H₂} {H₂′} ≡H₁ ≡H₂ = record
+ { ↔h = +-resp-↔ ≡H₁.↔h ≡H₂.↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module ≡H₁ = Hypergraph-same ≡H₁
+ module ≡H₂ = Hypergraph-same ≡H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module H₁+H₂′ = Hypergraph (together H₁′ H₂′)
+ open ≡-Reasoning
+ open Inverse
+ open Hypergraph
+ ≗a : [ ≡H₁.a , ≡H₂.a ] ∘ splitAt ≡H₁.h
+ ≗ [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′
+ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h
+   ≗a e = begin
+ [ ≡H₁.a , ≡H₂.a ] (splitAt ≡H₁.h e) ≡⟨ [,]-cong ≡H₁.≗a ≡H₂.≗a (splitAt ≡H₁.h e) ⟩
+ ([ ≡H₁.a′ ∘ ≡H₁.to , ≡H₂.a′ ∘ ≡H₂.to ] ∘ splitAt ≡H₁.h) e ≡⟨ [,]-map (splitAt ≡H₁.h e) ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ≡⟨ (cong [ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt-join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ⟨
+ ([ ≡H₁.a′ , ≡H₂.a′ ] ∘ splitAt ≡H₁.h′ ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h) e ∎
+ ≗arity : H₁+H₂.arity ≗ H₁+H₂′.arity ∘ join ≡H₁.h′ ≡H₂.h′ ∘ map ≡H₁.to ≡H₂.to ∘ splitAt ≡H₁.h
+ ≗arity = cong ℕ.suc ∘ ≗a
+ ≗j : (e : Fin H₁+H₂.h)
+ (i : Fin (H₁+H₂.arity e))
+ → H₁+H₂.j e i
+ ≡ H₁+H₂′.j (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e) (cast (≗arity e) i)
+ ≗j e i with splitAt ≡H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = cong (_↑ˡ m) (≡H₁.≗j e₁ i)
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = cong (n ↑ʳ_) (≡H₂.≗j e₂ i)
+ ≗l : (e : Fin H₁+H₂.h) → l+l H₁ H₂ e ≡ cast-gate (sym (≗arity e)) (l+l H₁′ H₂′ (to (+-resp-↔ ≡H₁.↔h ≡H₂.↔h) e))
+ ≗l e with splitAt ≡H₁.h e | .{≗arity e}
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ ≡H₁.h′ (≡H₁.to e₁) ≡H₂.h′ = ≡H₁.≗l e₁
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ ≡H₁.h′ ≡H₂.h′ (≡H₂.to e₂) = ≡H₂.≗l e₂
+
+commute
+ : (f : Fin n → Fin n′)
+ → (g : Fin m → Fin m′)
+ → Hypergraph-same
+ (together (map-nodes f H₁) (map-nodes g H₂))
+ (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂))
+commute {n} {n′} {m} {m′} {H₁} {H₂} f g = record
+ { ↔h = ≡H₁+H₂.↔h
+ ; ≗a = ≡H₁+H₂.≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₁+H₂ = Hypergraph (together H₁ H₂)
+ module ≡H₁+H₂ = Hypergraph-same {H = together H₁ H₂} Hypergraph-same-refl
+ open Hypergraph
+ open ≡-Reasoning
+ ≗j : (e : Fin (H₁.h + H₂.h))
+ (i : Fin ((ℕ.suc ∘ [ H₁.a , H₂.a ] ∘ splitAt H₁.h) e))
+ → j (together (map-nodes f H₁) (map-nodes g H₂)) e i
+ ≡ j (map-nodes ([ (_↑ˡ m′) ∘ f , (n′ ↑ʳ_) ∘ g ] ∘ splitAt n) (together H₁ H₂)) (≡H₁+H₂.to e) (cast refl i)
+ ≗j e i rewrite (cast-is-id refl i) with splitAt H₁.h e
+ ... | inj₁ e₁ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m = refl
+ ... | inj₂ e₂ rewrite splitAt-↑ʳ n m (H₂.j e₂ i) = refl
+ ≗l : (e : Fin (H₁.h + H₂.h))
+ → l+l (map-nodes f H₁) (map-nodes g H₂) e
+ ≡ cast-gate refl (l+l H₁ H₂ (≡H₁+H₂.to e))
+ ≗l e rewrite cast-gate-is-id refl (l+l H₁ H₂ (≡H₁+H₂.to e)) with splitAt H₁.h e
+ ... | inj₁ e₁ = refl
+ ... | inj₂ e₁ = refl
+
+⊗-homomorphism : NaturalTransformation (-×- ∘′ (F ⁂ F)) (F ∘′ -+-)
+⊗-homomorphism = record
+ { η = λ { (m , n) → η }
+ ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g }
+ ; sym-commute = λ { (f , g) {H₁ , H₂} → Hypergraph-same-sym (commute {H₁ = H₁} {H₂ = H₂} f g) }
+ }
+ where
+ η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m))
+ η = record
+ { to = λ { (H₁ , H₂) → together H₁ H₂ }
+ ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ }
+ }
+
++-assoc-↔ : ∀ (x y z : ℕ) → Fin (x + y + z) ↔ Fin (x + (y + z))
++-assoc-↔ x y z = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → isoˡ _ }) , λ { refl → isoʳ _ }
+ }
+ where
+ module Nat = Morphism Nat
+ open Nat._≅_ (Nat-+-assoc {x} {y} {z})
+
+associativity
+ : {X Y Z : ℕ}
+ → {H₁ : Hypergraph X}
+ → {H₂ : Hypergraph Y}
+ → {H₃ : Hypergraph Z}
+ → Hypergraph-same
+ (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃))
+ (together H₁ (together H₂ H₃))
+associativity {X} {Y} {Z} {H₁} {H₂} {H₃} = record
+ { ↔h = ↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ module H₃ = Hypergraph H₃
+ open ≡-Reasoning
+ open Hypergraph
+ ↔h : Fin (H₁.h + H₂.h + H₃.h) ↔ Fin (H₁.h + (H₂.h + H₃.h))
+ ↔h = +-assoc-↔ H₁.h H₂.h H₃.h
+ ≗a : (x : Fin (H₁.h + H₂.h + H₃.h))
+ → [ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) x)
+ ≡ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt H₁.h ([ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] (splitAt (H₁.h + H₂.h) x)))
+ ≗a x = begin
+ ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ inj₁ ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,-]-cong (cong [ H₂.a , H₃.a ] ∘ (λ i → splitAt-↑ˡ H₂.h i H₃.h)) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [-,]-cong ([,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , H₃.a ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ inj₂ ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,-]-cong (cong [ H₂.a , H₃.a ] ∘ splitAt-↑ʳ H₂.h H₃.h) (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ [,]-∘ [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] (splitAt (H₁.h + H₂.h) x) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , inj₂ ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,-]-cong (splitAt-↑ʳ H₁.h (H₂.h + H₃.h) ∘ (H₂.h ↑ʳ_)) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([-,]-cong (splitAt-join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ [ splitAt H₁.h ∘ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , splitAt H₁.h ∘ (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong [ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ([,]-∘ (splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟨
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ join H₁.h (H₂.h + H₃.h) ∘ map₂ (_↑ˡ H₃.h) ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ [ inj₁ , inj₂ ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x
+ ≡⟨ cong ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h) ([-,]-cong ([,]-∘ [ _↑ˡ H₂.h + H₃.h , H₁.h ↑ʳ_ ] ∘ splitAt H₁.h) (splitAt (H₁.h + H₂.h) x)) ⟩
+ ([ H₁.a , [ H₂.a , H₃.a ] ∘ splitAt H₂.h ] ∘ splitAt H₁.h ∘ [ [ _↑ˡ H₂.h + H₃.h , (H₁.h ↑ʳ_) ∘ (_↑ˡ H₃.h) ] ∘ splitAt H₁.h , (H₁.h ↑ʳ_) ∘ (H₂.h ↑ʳ_) ] ∘ splitAt (H₁.h + H₂.h)) x ∎
+ ≗j : (e : Fin (H₁.h + H₂.h + H₃.h))
+ (i : Fin (ℕ.suc ([ [ H₁.a , H₂.a ] ∘ splitAt H₁.h , H₃.a ] (splitAt (H₁.h + H₂.h) e))))
+ → Inverse.to (+-assoc-↔ X Y Z) (j+j (together H₁ H₂) H₃ e i)
+ ≡ j+j H₁ (together H₂ H₃) (Inverse.to ↔h e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i with splitAt (H₁.h + H₂.h) e
+ ≗j e i | inj₁ e₁₂ with splitAt H₁.h e₁₂
+ ≗j e i | inj₁ e₁₂ | inj₁ e₁
+ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h)
+ rewrite splitAt-↑ˡ (X + Y) (H₁.j e₁ i ↑ˡ Y) Z
+ rewrite splitAt-↑ˡ X (H₁.j e₁ i) Y = cong ((_↑ˡ Y + Z) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₁ e₁₂ | inj₂ e₂
+ rewrite splitAt-↑ʳ H₁.h H₂.h e₂
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₃.h
+ rewrite splitAt-↑ˡ (X + Y) (X ↑ʳ H₂.j e₂ i) Z
+ rewrite splitAt-↑ʳ X Y (H₂.j e₂ i) = cong ((X ↑ʳ_) ∘ (_↑ˡ Z) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₃
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃)
+ rewrite splitAt-↑ʳ H₂.h H₃.h e₃
+ rewrite splitAt-↑ʳ (X + Y) Z (H₃.j e₃ i) = cong ((X ↑ʳ_) ∘ (Y ↑ʳ_) ∘ H₃.j e₃) (sym (cast-is-id refl i))
+ ≗l : (e : Fin (H₁.h + H₂.h + H₃.h))
+ → l (map-nodes (Inverse.to (+-assoc-↔ X Y Z)) (together (together H₁ H₂) H₃)) e
+ ≡ cast-gate (sym (cong ℕ.suc (≗a e))) (l (together H₁ (together H₂ H₃)) (Inverse.to ↔h e))
+ ≗l e with splitAt (H₁.h + H₂.h) e
+ ≗l e | inj₁ e₁₂ with splitAt H₁.h e₁₂
+ ≗l e | inj₁ e₁₂ | inj₁ e₁
+ rewrite splitAt-↑ˡ H₁.h e₁ (H₂.h + H₃.h) = sym (cast-gate-is-id refl (H₁.l e₁))
+ ≗l e | inj₁ e₁₂ | inj₂ e₂
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (e₂ ↑ˡ H₃.h)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₃.h = sym (cast-gate-is-id refl (H₂.l e₂))
+ ≗l e | inj₂ e₃
+ rewrite splitAt-↑ʳ H₁.h (H₂.h + H₃.h) (H₂.h ↑ʳ e₃)
+ rewrite splitAt-↑ʳ H₂.h H₃.h e₃ = sym (cast-gate-is-id refl (H₃.l e₃))
+
+n+0↔n : ∀ n → Fin (n + 0) ↔ Fin n
+n+0↔n n = record
+ { to = to
+ ; from = from
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ to : Fin (n + 0) → Fin n
+ to x with inj₁ x₁ ← splitAt n x = x₁
+ from : Fin n → Fin (n + 0)
+ from x = x ↑ˡ 0
+ from∘to : (x : Fin (n + 0)) → from (to x) ≡ x
+ from∘to x with inj₁ x₁ ← splitAt n x in eq = splitAt⁻¹-↑ˡ eq
+ to∘from : (x : Fin n) → to (from x) ≡ x
+ to∘from x rewrite splitAt-↑ˡ n x 0 = refl
+
+unitaryʳ : Hypergraph-same (map-nodes ([ (λ x → x) , (λ ()) ] ∘ splitAt n) (together H empty-hypergraph)) H
+unitaryʳ {n} {H} = record
+ { ↔h = h+0↔h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ module H = Hypergraph H
+ module H+0 = Hypergraph (together H empty-hypergraph)
+ h+0↔h : Fin H+0.h ↔ Fin H.h
+ h+0↔h = n+0↔n H.h
+ ≗a : (e : Fin (H.h + 0)) → [ H.a , (λ ()) ] (splitAt H.h e) ≡ H.a (Inverse.to h+0↔h e)
+ ≗a e with inj₁ e₁ ← splitAt H.h e in eq = refl
+ ≗j : (e : Fin (H.h + 0))
+ (i : Fin (ℕ.suc ([ H.a , (λ ()) ] (splitAt H.h e))))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (j+j H empty-hypergraph e i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i = ≗j-aux (splitAt H.h e) refl (j+j H empty-hypergraph e) refl (≗a e) i
+ where
+ ≗j-aux
+ : (w : Fin H.h ⊎ Fin 0)
+ → (eq₁ : splitAt H.h e ≡ w)
+ → (w₁ : Fin (ℕ.suc ([ H.a , (λ ()) ] w)) → Fin (n + 0))
+ → j+j H empty-hypergraph e ≡ subst (λ hole → Fin (ℕ.suc ([ H.a , (λ ()) ] hole)) → Fin (n + 0)) (sym eq₁) w₁
+ → (w₂ : [ H.a , (λ ()) ] w ≡ H.a (Inverse.to h+0↔h e))
+ (i : Fin (ℕ.suc ([ H.a , (λ ()) ] w)))
+ → [ (λ x → x) , (λ ()) ] (splitAt n (w₁ i))
+ ≡ H.j (Inverse.to h+0↔h e) (cast (cong ℕ.suc w₂) i)
+ ≗j-aux (inj₁ e₁) eq w₁ eq₁ w₂ i
+ with (inj₁ x) ← splitAt n (w₁ i) in eq₂
+ rewrite eq = trans
+ (↑ˡ-injective 0 x (H.j e₁ i) (trans (splitAt⁻¹-↑ˡ eq₂) (sym (cong-app eq₁ i))))
+ (cong (H.j e₁) (sym (cast-is-id refl i)))
+ ≗l : (e : Fin (H.h + 0))
+ → l+l H empty-hypergraph e
+ ≡ cast-gate (sym (cong ℕ.suc (≗a e))) (H.l (Inverse.to h+0↔h e))
+ ≗l e with splitAt H.h e | {(≗a e)}
+ ... | inj₁ e₁ = sym (cast-gate-is-id refl (H.l e₁))
+
++-comm-↔ : ∀ (n m : ℕ) → Fin (n + m) ↔ Fin (m + n)
++-comm-↔ n m = record
+ { to = join m n ∘ swap ∘ splitAt n
+ ; from = join n m ∘ swap ∘ splitAt m
+ ; to-cong = λ { refl → refl }
+ ; from-cong = λ { refl → refl }
+ ; inverse = (λ { refl → to∘from _ }) , λ { refl → from∘to _ }
+ }
+ where
+ open ≡-Reasoning
+ to∘from : join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m ≗ id
+ to∘from x = begin
+ (join m n ∘ swap ∘ splitAt n ∘ join n m ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n ∘ swap) ∘ splitAt-join n m ∘ swap ∘ splitAt m) x ⟩
+ (join m n ∘ swap ∘ swap ∘ splitAt m) x ≡⟨ (cong (join m n) ∘ swap-involutive ∘ splitAt m) x ⟩
+ (join m n ∘ splitAt m) x ≡⟨ join-splitAt m n x ⟩
+ x ∎
+ from∘to : join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n ≗ id
+ from∘to x = begin
+ (join n m ∘ swap ∘ splitAt m ∘ join m n ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m ∘ swap) ∘ splitAt-join m n ∘ swap ∘ splitAt n) x ⟩
+ (join n m ∘ swap ∘ swap ∘ splitAt n) x ≡⟨ (cong (join n m) ∘ swap-involutive ∘ splitAt n) x ⟩
+ (join n m ∘ splitAt n) x ≡⟨ join-splitAt n m x ⟩
+ x ∎
+
+[,]∘swap : {A B C : Set} {f : A → C} {g : B → C} → [ f , g ] ∘ swap ≗ [ g , f ]
+[,]∘swap (inj₁ x) = refl
+[,]∘swap (inj₂ y) = refl
+
+braiding
+ : {n m : ℕ}
+ {H₁ : Hypergraph n}
+ {H₂ : Hypergraph m}
+ → Hypergraph-same (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) (together H₂ H₁)
+braiding {n} {m} {H₁} {H₂} = record
+ { ↔h = +-comm-↔ H₁.h H₂.h
+ ; ≗a = ≗a
+ ; ≗j = ≗j
+ ; ≗l = ≗l
+ }
+ where
+ open ≡-Reasoning
+ module H₁ = Hypergraph H₁
+ module H₂ = Hypergraph H₂
+ ≗a : (e : Fin (H₁.h + H₂.h))
+ → [ H₁.a , H₂.a ] (splitAt H₁.h e)
+ ≡ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e))))
+ ≗a e = begin
+ [ H₁.a , H₂.a ] (splitAt H₁.h e) ≡⟨ [,]∘swap (splitAt H₁.h e) ⟨
+ [ H₂.a , H₁.a ] (swap (splitAt H₁.h e)) ≡⟨ cong [ H₂.a , H₁.a ] (splitAt-join H₂.h H₁.h (swap (splitAt H₁.h e))) ⟨
+ [ H₂.a , H₁.a ] (splitAt H₂.h (join H₂.h H₁.h (swap (splitAt H₁.h e)))) ∎
+ ≗j : (e : Fin (Hypergraph.h (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂))))
+ (i : Fin (Hypergraph.arity (map-nodes ([ m ↑ʳ_ , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e))
+ → Hypergraph.j (map-nodes ([ _↑ʳ_ m , _↑ˡ n ] ∘ splitAt n) (together H₁ H₂)) e i
+ ≡ Hypergraph.j (together H₂ H₁) (Inverse.to (+-comm-↔ H₁.h H₂.h) e) (cast (cong ℕ.suc (≗a e)) i)
+ ≗j e i with splitAt H₁.h e
+ ≗j e i | inj₁ e₁
+ rewrite splitAt-↑ˡ n (H₁.j e₁ i) m
+ rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = cong ((m ↑ʳ_) ∘ H₁.j e₁) (sym (cast-is-id refl i))
+ ≗j e i | inj₂ e₂
+ rewrite splitAt-↑ʳ n m (H₂.j e₂ i)
+ rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = cong ((_↑ˡ n) ∘ H₂.j e₂) (sym (cast-is-id refl i))
+ ≗l : (e : Fin (H₁.h + H₂.h))
+ → l+l H₁ H₂ e
+ ≡ cast-gate (sym (cong ℕ.suc (≗a e))) (l+l H₂ H₁ (Inverse.to (+-comm-↔ H₁.h H₂.h) e))
+ ≗l e with splitAt H₁.h e | .{≗a e}
+ ≗l e | inj₁ e₁ rewrite splitAt-↑ʳ H₂.h H₁.h e₁ = sym (cast-gate-is-id refl (H₁.l e₁))
+ ≗l e | inj₂ e₂ rewrite splitAt-↑ˡ H₂.h e₂ H₁.h = sym (cast-gate-is-id refl (H₂.l e₂))
+
+hypergraph : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ})
+hypergraph = record
+ { F = F
+ ; isBraidedMonoidal = record
+ { isMonoidal = record
+ { ε = ε
+ ; ⊗-homo = ntHelper record
+ { η = λ { (m , n) → η }
+ ; commute = λ { (f , g) {H₁ , H₂} → commute {H₁ = H₁} {H₂ = H₂} f g }
+ }
+ ; associativity = λ { {X} {Y} {Z} {(H₁ , H₂) , H₃} → associativity {X} {Y} {Z} {H₁} {H₂} {H₃} }
+ ; unitaryˡ = Hypergraph-same-refl
+ ; unitaryʳ = unitaryʳ
+ }
+ ; braiding-compat = λ { {X} {Y} {H₁ , H₂} → braiding {X} {Y} {H₁} {H₂} }
+ }
+ }
+ where
+ η : Func (×-setoid (Hypergraph-setoid n) (Hypergraph-setoid m)) (Hypergraph-setoid (n + m))
+ η = record
+ { to = λ { (H₁ , H₂) → together H₁ H₂ }
+ ; cong = λ { (≡H₁ , ≡H₂) → together-resp-same ≡H₁ ≡H₂ }
+ }
+
+module F = SymmetricMonoidalFunctor hypergraph
+
+and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) (F.₀ 3)
+and-gate = record
+ { to = λ { (lift tt) → and-graph }
+ ; cong = λ { (lift tt) → Hypergraph-same-refl }
+ }
+ where
+ and-graph : Hypergraph 3
+ and-graph = record
+ { h = 1
+ ; a = λ { 0F → 2 }
+ ; j = λ { 0F → edge-0-nodes }
+ ; l = λ { 0F → AND }
+ }
+ where
+ edge-0-nodes : Fin 3 → Fin 3
+ edge-0-nodes 0F = # 0
+ edge-0-nodes 1F = # 1
+ edge-0-nodes 2F = # 2