diff options
-rw-r--r-- | FinMerge.agda | 26 | ||||
-rw-r--r-- | FinMerge/Properties.agda | 71 |
2 files changed, 38 insertions, 59 deletions
diff --git a/FinMerge.agda b/FinMerge.agda index 51e7a67..c62fe14 100644 --- a/FinMerge.agda +++ b/FinMerge.agda @@ -1,3 +1,4 @@ +{-# OPTIONS --without-K --safe #-} module FinMerge where open import Data.Empty using (⊥-elim) @@ -6,7 +7,7 @@ open import Data.Fin.Properties using (¬Fin0) open import Data.Nat using (ℕ; _+_; _≤_; _<_ ; z<s; s≤s) open import Data.Nat.Properties using (≤-trans) open import Data.Sum.Base using (_⊎_) -open import Data.Product using (_×_; _,_; Σ-syntax; map₂) +open import Data.Product using (_×_; _,_; Σ-syntax; map₂; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym) open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) open import Function using (id ; _∘_ ; _$_) @@ -30,16 +31,19 @@ pluck (_≤_.s≤s m) (Fin.suc x) = Data.Maybe.Base.map Fin.suc (pluck m x) merge : {i j : ℕ} → i < j ≤ n → Fin (ℕ.suc n) → Fin n merge (lt , le) x = fromMaybe (fromℕ< (≤-trans lt le)) (pluck le x) +glue-once : Fin (ℕ.suc n) → Fin (ℕ.suc n) → Σ[ x ∈ ℕ ] (Fin (ℕ.suc n) → Fin x) +glue-once {n} f0 g0 with compare f0 g0 +... | less (f0<g0 , s≤s g0≤n) = n , merge (f0<g0 , g0≤n) +... | equal f0≡g0 = ℕ.suc n , id +... | greater (g0<f0 , s≤s f0≤n) = n , merge (g0<f0 , f0≤n) + -- Glue together the image of two finite-set functions glue : (Fin m → Fin n) → (Fin m → Fin n) → Σ[ x ∈ ℕ ] (Fin n → Fin x) glue {ℕ.zero} {n} _ _ = n , id glue {ℕ.suc _} {ℕ.zero} f _ = ⊥-elim (¬Fin0 (f (# 0))) glue {ℕ.suc _} {ℕ.suc _} f g with glue (f ∘ Fin.suc) (g ∘ Fin.suc) ... | ℕ.zero , h = ⊥-elim (¬Fin0 (h (# 0))) -... | ℕ.suc x , h with compare (h (f (# 0))) (h (g (# 0))) -... | less (f0<g0 , s≤s g0<n) = x , merge (f0<g0 , g0<n) ∘ h -... | equal f0≡g0 = ℕ.suc x , h -... | greater (g0<f0 , s≤s f0<n) = x , merge (g0<f0 , f0<n) ∘ h +... | ℕ.suc _ , h = map₂ (_∘ h) (glue-once (h (f (# 0))) (h (g (# 0)))) -- Glue together the image of two finite-set functions, iterative glue-iter @@ -49,11 +53,7 @@ glue-iter → (Fin n → Fin y) → Σ[ x ∈ ℕ ] (Fin n → Fin x) glue-iter {ℕ.zero} {n} {y} f g h = y , h -glue-iter {ℕ.suc m} {n} {y} f g h with compare (f (# 0)) (g (# 0)) -... | less (f0<g0 , s≤s g0≤n) = - let p = merge (f0<g0 , g0≤n) in - glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) -... | equal _ = glue-iter (f ∘ Fin.suc) (g ∘ Fin.suc) h -... | greater (g0<f0 , s≤s f0≤n) = - let p = merge (g0<f0 , f0≤n) in - glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) +glue-iter {ℕ.suc m} {n} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0))) +glue-iter {ℕ.suc m} {n} {ℕ.suc y} f g h = + let p = proj₂ (glue-once (f (# 0)) (g (# 0))) in + glue-iter (p ∘ f ∘ Fin.suc) (p ∘ g ∘ Fin.suc) (p ∘ h) diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda index e403d99..79f8686 100644 --- a/FinMerge/Properties.agda +++ b/FinMerge/Properties.agda @@ -1,5 +1,7 @@ +{-# OPTIONS --without-K --safe #-} module FinMerge.Properties where +open import Data.Empty using (⊥-elim) open import Data.Fin using (Fin; fromℕ<; toℕ; #_; lower₁) open import Data.Fin.Properties using (¬Fin0) open import Data.Nat using (ℕ; _+_; _≤_; _<_; z<s; pred; z≤n; s≤s) @@ -12,7 +14,7 @@ open import Function using (id; _∘_) open import Util using (_<_<_; _<_≤_; toℕ<; less; equal; greater; compare) -open import FinMerge using (merge; pluck; glue-iter) +open import FinMerge using (merge; pluck; glue-once; glue-iter) private @@ -106,43 +108,41 @@ merge-i-j {_} {i} {j} i<j≤n = ≡ lower₁ i (not-n i<j≤n) ≡⟨ sym (j-to-i i<j≤n) ⟩ merge i<j≤n j ∎ +glue-once-correct + : (f0 g0 : Fin (ℕ.suc n)) + → proj₂ (glue-once f0 g0) f0 ≡ proj₂ (glue-once f0 g0) g0 +glue-once-correct {n} f0 g0 with compare f0 g0 +... | less (f0<g0 , s≤s g0≤n) = merge-i-j (f0<g0 , g0≤n) +... | equal f0≡g0 = f0≡g0 +... | greater (g0<f0 , s≤s f0≤n) = sym (merge-i-j (g0<f0 , f0≤n)) + glue-iter-append : {y : ℕ} → (f g : Fin m → Fin y) → (h : Fin n → Fin y) → Σ[ h′ ∈ (Fin y → Fin (proj₁ (glue-iter f g h))) ] (proj₂ (glue-iter f g h) ≡ h′ ∘ h) glue-iter-append {ℕ.zero} f g h = id , refl -glue-iter-append {ℕ.suc m} f g h with compare (f (# 0)) (g (# 0)) -glue-iter-append {ℕ.suc m} f g h | less (f0<g0 , s≤s g0≤n) - with - glue-iter-append - (merge (f0<g0 , g0≤n) ∘ f ∘ Fin.suc) - (merge (f0<g0 , g0≤n) ∘ g ∘ Fin.suc) - (merge (f0<g0 , g0≤n) ∘ h) -... | h′ , glue-p∘h≡h′∘p∘h = h′ ∘ merge (f0<g0 , g0≤n) , glue-p∘h≡h′∘p∘h -glue-iter-append {ℕ.suc m} f g h | equal x = glue-iter-append (f ∘ Fin.suc) (g ∘ Fin.suc) h -glue-iter-append {ℕ.suc m} f g h | greater (g0<f0 , s≤s f0≤n) - with +glue-iter-append {ℕ.suc m} {_} {ℕ.zero} f g h = ⊥-elim (¬Fin0 (f (# 0))) +glue-iter-append {ℕ.suc m} {_} {ℕ.suc y} f g h with glue-iter-append - (merge (g0<f0 , f0≤n) ∘ f ∘ Fin.suc) - (merge (g0<f0 , f0≤n) ∘ g ∘ Fin.suc) - (merge (g0<f0 , f0≤n) ∘ h) -... | h′ , glue-p∘h≡h′∘p∘h = h′ ∘ merge (g0<f0 , f0≤n) , glue-p∘h≡h′∘p∘h + (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc) + (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc) + (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ h) +... | h′ , glue-p∘h≡h′∘p∘h = h′ ∘ proj₂ (glue-once (f (# 0)) (g (# 0))) , glue-p∘h≡h′∘p∘h lemma₂ : (f g : Fin (ℕ.suc m) → Fin n) → let p = proj₂ (glue-iter f g id) in p (f (# 0)) ≡ p (g (# 0)) -lemma₂ f g with compare (f (# 0)) (g (# 0)) -lemma₂ f g | less (f0<g0 , s≤s g0≤n) - with +lemma₂ {_} {ℕ.zero} f g = ⊥-elim (¬Fin0 (f (# 0))) +lemma₂ {_} {ℕ.suc n} f g with glue-iter-append - (merge (f0<g0 , g0≤n) ∘ f ∘ Fin.suc) - (merge (f0<g0 , g0≤n) ∘ g ∘ Fin.suc) - (merge (f0<g0 , g0≤n)) + (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ f ∘ Fin.suc) + (proj₂ (glue-once (f (# 0)) (g (# 0))) ∘ g ∘ Fin.suc) + (proj₂ (glue-once (f (# 0)) (g (# 0)))) ... | h′ , glue≡h′∘h = ≡ where open ≡-Reasoning - p = merge (f0<g0 , g0≤n) + p = proj₂ (glue-once (f (# 0)) (g (# 0))) f′ = f ∘ Fin.suc g′ = g ∘ Fin.suc ≡ : proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) @@ -150,27 +150,6 @@ lemma₂ f g | less (f0<g0 , s≤s g0≤n) ≡ = begin proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) ≡⟨ cong-app glue≡h′∘h (f Fin.zero) ⟩ - h′ (p (f Fin.zero)) ≡⟨ cong h′ (merge-i-j (f0<g0 , g0≤n)) ⟩ + h′ (p (f Fin.zero)) ≡⟨ cong h′ (glue-once-correct (f (# 0)) (g (# 0))) ⟩ h′ (p (g Fin.zero)) ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero)) ⟩ - proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎ -lemma₂ f g | equal f0≡g0 = cong (proj₂ (glue-iter (f ∘ Fin.suc) (g ∘ Fin.suc) id)) f0≡g0 -lemma₂ f g | greater (g0<f0 , s≤s f0≤n) - with - glue-iter-append - (merge (g0<f0 , f0≤n) ∘ f ∘ Fin.suc) - (merge (g0<f0 , f0≤n) ∘ g ∘ Fin.suc) - (merge (g0<f0 , f0≤n) ∘ id) -... | h′ , glue≡h′∘h = ≡ - where - open ≡-Reasoning - p = merge (g0<f0 , f0≤n) - f′ = f ∘ Fin.suc - g′ = g ∘ Fin.suc - ≡ : proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) - ≡ proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) - ≡ = begin - proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (f Fin.zero) - ≡⟨ cong-app glue≡h′∘h (f Fin.zero) ⟩ - h′ (p (f Fin.zero)) ≡⟨ cong h′ (sym (merge-i-j (g0<f0 , f0≤n))) ⟩ - h′ (p (g Fin.zero)) ≡⟨ sym (cong-app glue≡h′∘h (g Fin.zero)) ⟩ - proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎ + proj₂ (glue-iter (p ∘ f′) (p ∘ g′) p) (g Fin.zero) ∎ |