diff options
-rw-r--r-- | FinMerge.agda | 7 | ||||
-rw-r--r-- | FinMerge/Properties.agda | 145 | ||||
-rw-r--r-- | Util.agda | 4 |
3 files changed, 145 insertions, 11 deletions
diff --git a/FinMerge.agda b/FinMerge.agda index c75e982..d7b3f0b 100644 --- a/FinMerge.agda +++ b/FinMerge.agda @@ -11,7 +11,7 @@ open import Data.Product using (_×_; _,_; Σ-syntax; map₂; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym) open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) open import Function using (id ; _∘_ ; _$_) -open import Data.Maybe.Base using (Maybe; just; nothing; fromMaybe) +open import Data.Maybe.Base using (Maybe; just; nothing; fromMaybe; map) open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare) @@ -25,7 +25,7 @@ pluck : m ≤ n → Fin (ℕ.suc n) → Maybe (Fin n) pluck z≤n Fin.zero = nothing pluck z≤n (Fin.suc x) = just x pluck (s≤s m) Fin.zero = just Fin.zero -pluck (s≤s m) (Fin.suc x) = Data.Maybe.Base.map Fin.suc (pluck m x) +pluck (s≤s m) (Fin.suc x) = map Fin.suc (pluck m x) -- Send nothing to the specified m unpluck : m ≤ n → Maybe (Fin n) → Fin (ℕ.suc n) @@ -39,7 +39,7 @@ unpluck (s≤s m) (just (Fin.suc x)) = Fin.suc (unpluck m (just x)) merge : {i j : ℕ} → i < j ≤ n → Fin (ℕ.suc n) → Fin n merge (lt , le) x = fromMaybe (fromℕ< (≤-trans lt le)) (pluck le x) --- Merge two elements of a finite set +-- Left-adjoint to merge unmerge : {i j : ℕ} → i < j ≤ n → Fin n → Fin (ℕ.suc n) unmerge (lt , le) x = unpluck le (just x) @@ -48,6 +48,7 @@ glue-once {n} (less (i<j , s≤s j≤n)) = n , merge (i<j , j≤n) glue-once {n} (equal i≡j) = ℕ.suc n , id glue-once {n} (greater (j<i , s≤s i≤n)) = n , merge (j<i , i≤n) +-- Merge and unmerge glue-unglue-once : {i j : Fin (ℕ.suc n)} → Ordering i j diff --git a/FinMerge/Properties.agda b/FinMerge/Properties.agda index 9123460..c250abb 100644 --- a/FinMerge/Properties.agda +++ b/FinMerge/Properties.agda @@ -9,12 +9,12 @@ open import Data.Nat.Properties using (≤-trans; <⇒≢) open import Data.Product using (_,_; proj₁; proj₂; Σ-syntax) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; cong-app; sym; _≢_) open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) -open import Data.Maybe.Base using (Maybe; nothing; just; fromMaybe) +open import Data.Maybe.Base using (Maybe; map; nothing; just; fromMaybe) open import Function using (id; _∘_) open import Util using (_<_<_; _<_≤_; toℕ<; Ordering; less; equal; greater; compare) -open import FinMerge using (merge; pluck; glue-once; glue-unglue-once; glue-iter) +open import FinMerge using (merge; unmerge; pluck; glue-once; glue-unglue-once; glue-iter) private @@ -29,14 +29,14 @@ pluck-< → (m≤n : m ≤ n) → (x<m : toℕ x < m) → pluck m≤n x ≡ just (lower₁ x (not-n (x<m , m≤n))) -pluck-< {_} {_} {Fin.zero} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = refl -pluck-< {_} {_} {Fin.suc x} (_≤_.s≤s m≤n) (_≤_.s≤s x<m) = ≡ +pluck-< {_} {_} {Fin.zero} (s≤s m≤n) (s≤s x<m) = refl +pluck-< {_} {_} {Fin.suc x} (s≤s m≤n) (s≤s x<m) = ≡ where open ≡-Reasoning - ≡ : pluck (_≤_.s≤s m≤n) (Fin.suc x) + ≡ : pluck (s≤s m≤n) (Fin.suc x) ≡ just (lower₁ (Fin.suc x) (not-n (s≤s x<m , s≤s m≤n))) ≡ = begin - pluck (_≤_.s≤s m≤n) (Fin.suc x) ≡⟨⟩ + pluck (s≤s m≤n) (Fin.suc x) ≡⟨⟩ Data.Maybe.Base.map Fin.suc (pluck m≤n x) ≡⟨ cong (Data.Maybe.Base.map Fin.suc) (pluck-< m≤n x<m) ⟩ Data.Maybe.Base.map Fin.suc (just (lower₁ x (not-n (x<m , m≤n)))) ≡⟨⟩ @@ -159,3 +159,136 @@ lemma₂ {_} {ℕ.suc n} f g = in ≡ where open ≡-Reasoning + +j-to-i′ + : {i : ℕ} + → {j : Fin (ℕ.suc n)} + → ((i<j , j≤n) : i < toℕ j ≤ n) + → merge (i<j , j≤n) j ≡ fromℕ< (≤-trans i<j j≤n) +j-to-i′ (i<j , j≤n) = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (j-to-nothing j≤n) + where + j-to-nothing : {j : Fin (ℕ.suc n)} → (j≤n : toℕ j ≤ n) → pluck j≤n j ≡ nothing + j-to-nothing {ℕ.zero} {Fin.zero} z≤n = refl + j-to-nothing {ℕ.suc n} {Fin.zero} z≤n = refl + j-to-nothing {ℕ.suc n} {Fin.suc j} (s≤s j≤n) = cong (map Fin.suc) (j-to-nothing j≤n) + +unmerge-i + : {i j : Fin (ℕ.suc n)} + → ((i<j , j≤n) : toℕ i < toℕ j ≤ n) + → unmerge (i<j , j≤n) (fromℕ< (≤-trans i<j j≤n)) ≡ i +unmerge-i {ℕ.suc n} {Fin.zero} {Fin.suc j} (s≤s i<j , s≤s j≤n) = refl +unmerge-i {ℕ.suc n} {Fin.suc i} {Fin.suc j} (s≤s i<j , s≤s j≤n) = cong Fin.suc (unmerge-i (i<j , j≤n)) + +unmerge-k-< + : {i j k : Fin (ℕ.suc n)} + → ((i<j , j≤n) : toℕ i < toℕ j ≤ n) + → (k<j : toℕ k < toℕ j) + → unmerge (i<j , j≤n) (fromℕ< (≤-trans k<j j≤n)) ≡ k +unmerge-k-< {ℕ.suc n} {i} {Fin.suc j} {Fin.zero} (_ , s≤s j≤n) (s≤s k<j) = refl +unmerge-k-< {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (s≤s z≤n , j≤n) k<j) +unmerge-k-< {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s k<j) = cong Fin.suc (unmerge-k-< (i<j , j≤n) k<j) + +k-to-k-< + : {i j k : Fin (ℕ.suc n)} + → ((i<j , j≤n) : toℕ i < toℕ j ≤ n) + → (k<j : toℕ k < toℕ j) + → merge (i<j , j≤n) k ≡ fromℕ< (≤-trans k<j j≤n) +k-to-k-< (i<j , j≤n) k<j = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (k-to-just (k<j , j≤n)) + where + k-to-just + : {j k : Fin (ℕ.suc n)} + → ((k<j , j≤n) : toℕ k < toℕ j ≤ n) + → pluck j≤n k ≡ just (fromℕ< (≤-trans k<j j≤n)) + k-to-just {ℕ.suc n} {Fin.suc j} {Fin.zero} (s≤s k<j , s≤s j≤n) = refl + k-to-just {ℕ.suc n} {Fin.suc j} {Fin.suc k} (s≤s k<j , s≤s j≤n) = cong (map Fin.suc) (k-to-just (k<j , j≤n)) + +sk-to-k-> + : {i j : Fin (ℕ.suc n)} + → {k : Fin n} + → ((i<j , j≤n) : toℕ i < toℕ j ≤ n) + → (j<sk : toℕ j < ℕ.suc (toℕ k)) + → merge (i<j , j≤n) (Fin.suc k) ≡ k +sk-to-k-> (i<j , j≤n) j<sk = cong (fromMaybe (fromℕ< (≤-trans i<j j≤n))) (sk-to-just j≤n j<sk) + where + sk-to-just + : {n : ℕ} + → {j : Fin (ℕ.suc n)} + → {k : Fin n} + → (j≤n : toℕ j ≤ n) + → (j<sk : toℕ j < ℕ.suc (toℕ k)) + → pluck j≤n (Fin.suc k) ≡ just k + sk-to-just {ℕ.suc _} {Fin.zero} {Fin.zero} z≤n (s≤s _) = refl + sk-to-just {ℕ.suc _} {Fin.zero} {Fin.suc _} z≤n (s≤s _) = refl + sk-to-just {ℕ.suc _} {Fin.suc _} {Fin.suc _} (s≤s j≤n) (s≤s j<sk) = cong (map Fin.suc) (sk-to-just j≤n j<sk) + +unmerge-k-> + : {i j : Fin (ℕ.suc n)} + → {k : Fin n} + → ((i<j , j≤n) : toℕ i < toℕ j ≤ n) + → (j<sk : toℕ j < ℕ.suc (toℕ k)) + → unmerge (i<j , j≤n) k ≡ Fin.suc k +unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc Fin.zero} {Fin.suc k} (s≤s z≤n , s≤s z≤n) (s≤s j<sk) = refl +unmerge-k-> {ℕ.suc n} {Fin.zero} {Fin.suc (Fin.suc j)} {Fin.suc k} (s≤s z≤n , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (s≤s z≤n , j≤n) j<sk) +unmerge-k-> {ℕ.suc n} {Fin.suc i} {Fin.suc j} {Fin.suc k} (s≤s i<j , s≤s j≤n) (s≤s j<sk) = cong Fin.suc (unmerge-k-> (i<j , j≤n) j<sk) + +unmerge-merge-< + : {i j k : Fin (ℕ.suc n)} + → (i<j≤n : toℕ i < toℕ j ≤ n) + → (k<j : toℕ k < toℕ j) + → unmerge i<j≤n (merge i<j≤n k) ≡ k +unmerge-merge-< {n} {i} {j} {k} i<j≤n@(_ , j≤n) k<j = ≡ + where + open ≡-Reasoning + ≡ : unmerge i<j≤n (merge i<j≤n k) ≡ k + ≡ = begin + unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n) (k-to-k-< i<j≤n k<j) ⟩ + unmerge i<j≤n (fromℕ< (≤-trans k<j j≤n)) ≡⟨ unmerge-k-< i<j≤n k<j ⟩ + k ∎ + +unmerge-merge-= + : {i j k : Fin (ℕ.suc n)} + → (i<j≤n : toℕ i < toℕ j ≤ n) + → k ≡ j + → unmerge i<j≤n (merge i<j≤n k) ≡ i +unmerge-merge-= {_} {i} {j} {k} i<j≤n@(i<j , j≤n) k≡j = ≡ + where + open ≡-Reasoning + ≡ : unmerge i<j≤n (merge i<j≤n k) ≡ i + ≡ = begin + unmerge i<j≤n (merge i<j≤n k) ≡⟨ cong (unmerge i<j≤n ∘ merge i<j≤n) k≡j ⟩ + unmerge i<j≤n (merge i<j≤n j) ≡⟨ cong (unmerge i<j≤n) (j-to-i′ i<j≤n) ⟩ + unmerge i<j≤n (fromℕ< (≤-trans i<j j≤n)) ≡⟨ unmerge-i i<j≤n ⟩ + i ∎ + +unmerge-merge-> + : {i j k : Fin (ℕ.suc n)} + → (i<j≤n : toℕ i < toℕ j ≤ n) + → (j<k : toℕ j < toℕ k) + → unmerge i<j≤n (merge i<j≤n k) ≡ k +unmerge-merge-> {n} {i} {j} {Fin.suc k} i<j≤n j<k = ≡ + where + open ≡-Reasoning + ≡ : unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡ Fin.suc k + ≡ = begin + unmerge i<j≤n (merge i<j≤n (Fin.suc k)) ≡⟨ cong (unmerge i<j≤n) (sk-to-k-> i<j≤n j<k) ⟩ + unmerge i<j≤n k ≡⟨ unmerge-k-> i<j≤n j<k ⟩ + Fin.suc k ∎ + +unmerge-merge + : {i j k : Fin (ℕ.suc n)} + → (i<j≤n : toℕ i < toℕ j ≤ n) + → (f : Fin (ℕ.suc n) → Fin m) + → f i ≡ f j + → f (unmerge i<j≤n (merge i<j≤n k)) ≡ f k +unmerge-merge {n} {m} {i} {j} {k} i<j≤n f fi≡fj with (compare k j) +... | less (k<j , _) = cong f (unmerge-merge-< i<j≤n k<j) +... | greater (j<k , _) = cong f (unmerge-merge-> i<j≤n j<k) +... | equal k≡j = ≡ + where + open ≡-Reasoning + ≡ : f (unmerge i<j≤n (merge i<j≤n k)) ≡ f k + ≡ = begin + f (unmerge i<j≤n (merge i<j≤n k)) ≡⟨ cong f (unmerge-merge-= i<j≤n k≡j) ⟩ + f i ≡⟨ fi≡fj ⟩ + f j ≡⟨ cong f (sym k≡j) ⟩ + f k ∎ @@ -27,6 +27,6 @@ compare Fin.zero Fin.zero = equal refl compare Fin.zero j@(Fin.suc _) = less (z<s , toℕ< j) compare i@(Fin.suc _) Fin.zero = greater (z<s , toℕ< i) compare (Fin.suc i) (Fin.suc j) with compare i j -... | less (i<j , j<n) = less (_≤_.s≤s i<j , _≤_.s≤s j<n) +... | less (i<j , j<n) = less (s≤s i<j , s≤s j<n) ... | equal i≡j = equal (cong Fin.suc i≡j) -... | greater (j<i , i<n) = greater (_≤_.s≤s j<i , _≤_.s≤s i<n) +... | greater (j<i , i<n) = greater (s≤s j<i , s≤s i<n) |