diff options
-rw-r--r-- | FinMerge.agda | 43 |
1 files changed, 37 insertions, 6 deletions
diff --git a/FinMerge.agda b/FinMerge.agda index a327602..d8b38fd 100644 --- a/FinMerge.agda +++ b/FinMerge.agda @@ -1,13 +1,15 @@ module FinMerge where -open import Data.Fin using (Fin; splitAt; join; fromℕ<; cast) -open import Data.Nat using (ℕ; _+_; _≤_; _<_) -open import Data.Nat.Properties using (+-comm) +open import Data.Empty using (⊥-elim) +open import Data.Fin using (Fin; splitAt; join; fromℕ<; cast; toℕ; #_) renaming (_<_ to _<′_) +open import Data.Fin.Properties using (¬Fin0) +open import Data.Nat using (ℕ; _+_; _≤_; _<_ ; z<s) +open import Data.Nat.Properties using (+-comm; <⇒≤) open import Data.Sum.Base using (_⊎_) open import Data.Product using (_×_; _,_; Σ-syntax; map₂) open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym) open import Relation.Binary.PropositionalEquality.Properties using (module ≡-Reasoning) -open import Function using (_$_) +open import Function using (id ; _∘_ ; _$_) _<_≤_ : ℕ → ℕ → ℕ → Set @@ -16,6 +18,24 @@ _<_≤_ i j k = (i < j) × (j ≤ k) _<_<_ : ℕ → ℕ → ℕ → Set _<_<_ i j k = (i < j) × (j < k) +toℕ< : {n : ℕ} → (i : Fin n) → toℕ i < n +toℕ< Fin.zero = z<s +toℕ< (Fin.suc i) = _≤_.s≤s (toℕ< i) + +data Ordering {n : ℕ} : Fin n → Fin n → Set where + less : ∀ {i j} → toℕ i < toℕ j < n → Ordering i j + equal : ∀ {i j} → toℕ i ≡ toℕ j → Ordering i j + greater : ∀ {i j} → toℕ j < toℕ i < n → Ordering i j + +compare : ∀ {n : ℕ} (i j : Fin n) → Ordering i j +compare Fin.zero Fin.zero = equal refl +compare Fin.zero j@(Fin.suc _) = less (z<s , toℕ< j) +compare i@(Fin.suc _) Fin.zero = greater (z<s , toℕ< i) +compare (Fin.suc i) (Fin.suc j) with compare i j +... | less (i<j , j<n) = less (_≤_.s≤s i<j , _≤_.s≤s j<n) +... | equal i≡j = equal (cong ℕ.suc i≡j) +... | greater (j<i , i<n) = greater (_≤_.s≤s j<i , _≤_.s≤s i<n) + private variable m n : ℕ @@ -32,8 +52,8 @@ splitℕ _≤_.z≤n = _ , refl splitℕ (_≤_.s≤s le) = map₂ (cong ℕ.suc) (splitℕ le) -- Merge two elements of a finite set -merge : (i j : ℕ) → i < j ≤ n → Fin (ℕ.suc n) → Fin n -merge {n} i j (lt , le) x with splitℕ le +merge : {i j : ℕ} → i < j ≤ n → Fin (ℕ.suc n) → Fin n +merge {n} {i} {j} (lt , le) x with splitℕ le ... | j′ , n≡j+j′ = cast (sym n≡j+j′) $ join j j′ $ @@ -49,3 +69,14 @@ merge {n} i j (lt , le) x with splitℕ le ℕ.suc (j′ + j) ≡⟨⟩ ℕ.suc j′ + j ≡⟨ +-comm (ℕ.suc j′) j ⟩ j + ℕ.suc j′ ∎ + +-- Glue together the image of two finite-set functions +glue : (Fin m → Fin n) → (Fin m → Fin n) → Σ[ x ∈ ℕ ] (Fin n → Fin x) +glue {ℕ.zero} {n} _ _ = n , id +glue {ℕ.suc _} {ℕ.zero} f _ = ⊥-elim (¬Fin0 (f (# 0))) +glue {ℕ.suc _} {ℕ.suc n} f g with glue (f ∘ Fin.suc) (g ∘ Fin.suc) +... | ℕ.zero , h = ⊥-elim (¬Fin0 (h (# 0))) +... | ℕ.suc x , h with compare (h (f (# 0))) (h (g (# 0))) +... | less (f0<g0 , _≤_.s≤s g0<n) = x , merge (f0<g0 , g0<n) ∘ h +... | equal f0≡g0 = ℕ.suc x , h +... | greater (g0<f0 , _≤_.s≤s f0<n) = x , merge (g0<f0 , f0<n) ∘ h |