aboutsummaryrefslogtreecommitdiff
path: root/Adjoint/Instance/List.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Adjoint/Instance/List.agda')
-rw-r--r--Adjoint/Instance/List.agda107
1 files changed, 107 insertions, 0 deletions
diff --git a/Adjoint/Instance/List.agda b/Adjoint/Instance/List.agda
new file mode 100644
index 0000000..1b65985
--- /dev/null
+++ b/Adjoint/Instance/List.agda
@@ -0,0 +1,107 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_; suc)
+
+module Adjoint.Instance.List {ℓ : Level} where
+
+import Data.List as L
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Category.Instance.Setoids.SymmetricMonoidal {ℓ} {ℓ} using (Setoids-×)
+
+module S = SymmetricMonoidalCategory Setoids-×
+
+open import Categories.Adjoint using (_⊣_)
+open import Categories.Category.Construction.Monoids using (Monoids)
+open import Categories.Functor using (Functor; id; _∘F_)
+open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
+open import Categories.Object.Monoid S.monoidal using (Monoid; IsMonoid; Monoid⇒)
+open import Data.Monoid using (toMonoid; toMonoid⇒)
+open import Data.Opaque.List using ([-]ₛ; Listₛ; mapₛ; foldₛ; ++ₛ-homo; []ₛ-homo; fold-mapₛ; fold)
+open import Data.Product using (_,_; uncurry)
+open import Data.Setoid using (∣_∣)
+open import Function using (_⟶ₛ_; _⟨$⟩_)
+open import Functor.Forgetful.Instance.Monoid {suc ℓ} {ℓ} {ℓ} using () renaming (Forget to Forget′)
+open import Functor.Free.Instance.Monoid {ℓ} {ℓ} using (Listₘ; mapₘ; ListMonoid) renaming (Free to Free′)
+open import Relation.Binary using (Setoid)
+
+open Monoid
+open Monoid⇒
+
+open import Categories.Category using (Category)
+
+Mon[S] : Category (suc ℓ) ℓ ℓ
+Mon[S] = Monoids S.monoidal
+
+Free : Functor S.U Mon[S]
+Free = Free′
+
+Forget : Functor Mon[S] S.U
+Forget = Forget′ S.monoidal
+
+opaque
+ unfolding [-]ₛ mapₘ
+ map-[-]ₛ
+ : {X Y : Setoid ℓ ℓ}
+ (f : X ⟶ₛ Y)
+ {x : ∣ X ∣}
+ → (open Setoid (Listₛ Y))
+ → [-]ₛ ⟨$⟩ (f ⟨$⟩ x)
+ ≈ arr (mapₘ f) ⟨$⟩ ([-]ₛ ⟨$⟩ x)
+ map-[-]ₛ {X} {Y} f {x} = Setoid.refl (Listₛ Y)
+
+unit : NaturalTransformation id (Forget ∘F Free)
+unit = ntHelper record
+ { η = λ X → [-]ₛ {ℓ} {ℓ} {X}
+ ; commute = map-[-]ₛ
+ }
+
+opaque
+ unfolding toMonoid ListMonoid
+ foldₘ : (X : Monoid) → Monoid⇒ (Listₘ (Carrier X)) X
+ foldₘ X .arr = foldₛ (toMonoid X)
+ foldₘ X .preserves-μ {xs , ys} = ++ₛ-homo (toMonoid X) xs ys
+ foldₘ X .preserves-η {_} = []ₛ-homo (toMonoid X)
+
+opaque
+ unfolding foldₘ toMonoid⇒ mapₘ
+ fold-mapₘ
+ : {X Y : Monoid}
+ (f : Monoid⇒ X Y)
+ {x : ∣ Listₛ (Carrier X) ∣}
+ → (open Setoid (Carrier Y))
+ → arr (foldₘ Y) ⟨$⟩ (arr (mapₘ (arr f)) ⟨$⟩ x)
+ ≈ arr f ⟨$⟩ (arr (foldₘ X) ⟨$⟩ x)
+ fold-mapₘ {X} {Y} f = uncurry (fold-mapₛ (toMonoid X) (toMonoid Y)) (toMonoid⇒ X Y f)
+
+counit : NaturalTransformation (Free ∘F Forget) id
+counit = ntHelper record
+ { η = foldₘ
+ ; commute = fold-mapₘ
+ }
+
+opaque
+ unfolding mapₘ foldₘ fold
+ zig : (Aₛ : Setoid ℓ ℓ)
+ {xs : ∣ Listₛ Aₛ ∣}
+ → (open Setoid (Listₛ Aₛ))
+ → arr (foldₘ (Listₘ Aₛ)) ⟨$⟩ (arr (mapₘ [-]ₛ) ⟨$⟩ xs) ≈ xs
+ zig Aₛ {xs = L.[]} = Setoid.refl (Listₛ Aₛ)
+ zig Aₛ {xs = x L.∷ xs} = Setoid.refl Aₛ PW.∷ zig Aₛ {xs = xs}
+
+opaque
+ unfolding foldₘ fold
+ zag : (M : Monoid)
+ {x : ∣ Carrier M ∣}
+ → (open Setoid (Carrier M))
+ → arr (foldₘ M) ⟨$⟩ ([-]ₛ ⟨$⟩ x) ≈ x
+ zag M {x} = Setoid.sym (Carrier M) (identityʳ M {x , _})
+
+List⊣ : Free ⊣ Forget
+List⊣ = record
+ { unit = unit
+ ; counit = counit
+ ; zig = λ {X} → zig X
+ ; zag = λ {M} → zag M
+ }