diff options
Diffstat (limited to 'Category/Diagram/Pushout.agda')
-rw-r--r-- | Category/Diagram/Pushout.agda | 110 |
1 files changed, 110 insertions, 0 deletions
diff --git a/Category/Diagram/Pushout.agda b/Category/Diagram/Pushout.agda new file mode 100644 index 0000000..8ca384f --- /dev/null +++ b/Category/Diagram/Pushout.agda @@ -0,0 +1,110 @@ +{-# OPTIONS --without-K --safe #-} +open import Categories.Category.Core using (Category) + +module Category.Diagram.Pushout {o ℓ e} (𝒞 : Category o ℓ e) where + +open Category 𝒞 + +import Categories.Diagram.Pullback op as Pb using (up-to-iso) + +open import Categories.Diagram.Duality 𝒞 using (Pushout⇒coPullback) +open import Categories.Diagram.Pushout 𝒞 using (Pushout) +open import Categories.Diagram.Pushout.Properties 𝒞 using (glue; swap) +open import Categories.Morphism 𝒞 using (_≅_) +open import Categories.Morphism.Duality 𝒞 using (op-≅⇒≅) +open import Categories.Morphism.Reasoning 𝒞 using + ( id-comm + ; id-comm-sym + ; assoc²'' + ; assoc²' + ) + + +private + + variable + A B C D : Obj + f g h : A ⇒ B + +glue-i₁ : (p : Pushout f g) → Pushout h (Pushout.i₁ p) → Pushout (h ∘ f) g +glue-i₁ p = glue p + +glue-i₂ : (p₁ : Pushout f g) → Pushout (Pushout.i₂ p₁) h → Pushout f (h ∘ g) +glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂)) + +up-to-iso : (p p′ : Pushout f g) → Pushout.Q p ≅ Pushout.Q p′ +up-to-iso p p′ = op-≅⇒≅ (Pb.up-to-iso (Pushout⇒coPullback p) (Pushout⇒coPullback p′)) + +pushout-f-id : Pushout f id +pushout-f-id {_} {_} {f} = record + { i₁ = id + ; i₂ = f + ; commute = id-comm-sym + ; universal = λ {B} {h₁} {h₂} eq → h₁ + ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₁≈h₁ + ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → identityʳ + ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → eq ○ identityʳ + } + where + open HomReasoning + +pushout-id-g : Pushout id g +pushout-id-g {_} {_} {g} = record + { i₁ = g + ; i₂ = id + ; commute = id-comm + ; universal = λ {B} {h₁} {h₂} eq → h₂ + ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₂≈h₂ + ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → Equiv.sym eq ○ identityʳ + ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → identityʳ + } + where + open HomReasoning + +extend-i₁-iso + : {f : A ⇒ B} + {g : A ⇒ C} + (p : Pushout f g) + (B≅D : B ≅ D) + → Pushout (_≅_.from B≅D ∘ f) g +extend-i₁-iso {_} {_} {_} {_} {f} {g} p B≅D = record + { i₁ = P.i₁ ∘ B≅D.to + ; i₂ = P.i₂ + ; commute = begin + (P.i₁ ∘ B≅D.to) ∘ B≅D.from ∘ f ≈⟨ assoc²'' ⟨ + P.i₁ ∘ (B≅D.to ∘ B≅D.from) ∘ f ≈⟨ refl⟩∘⟨ B≅D.isoˡ ⟩∘⟨refl ⟩ + P.i₁ ∘ id ∘ f ≈⟨ refl⟩∘⟨ identityˡ ⟩ + P.i₁ ∘ f ≈⟨ P.commute ⟩ + P.i₂ ∘ g ∎ + ; universal = λ { eq → P.universal (assoc ○ eq) } + ; unique = λ {_} {h₁} {_} {j} ≈₁ ≈₂ → + let + ≈₁′ = begin + j ∘ P.i₁ ≈⟨ refl⟩∘⟨ identityʳ ⟨ + j ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ B≅D.isoˡ ⟨ + j ∘ P.i₁ ∘ B≅D.to ∘ B≅D.from ≈⟨ assoc²' ⟨ + (j ∘ P.i₁ ∘ B≅D.to) ∘ B≅D.from ≈⟨ ≈₁ ⟩∘⟨refl ⟩ + h₁ ∘ B≅D.from ∎ + in P.unique ≈₁′ ≈₂ + ; universal∘i₁≈h₁ = λ {E} {h₁} {_} {eq} → + begin + P.universal (assoc ○ eq) ∘ P.i₁ ∘ B≅D.to ≈⟨ sym-assoc ⟩ + (P.universal (assoc ○ eq) ∘ P.i₁) ∘ B≅D.to ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ + (h₁ ∘ B≅D.from) ∘ B≅D.to ≈⟨ assoc ⟩ + h₁ ∘ B≅D.from ∘ B≅D.to ≈⟨ refl⟩∘⟨ B≅D.isoʳ ⟩ + h₁ ∘ id ≈⟨ identityʳ ⟩ + h₁ ∎ + ; universal∘i₂≈h₂ = P.universal∘i₂≈h₂ + } + where + module P = Pushout p + module B≅D = _≅_ B≅D + open HomReasoning + +extend-i₂-iso + : {f : A ⇒ B} + {g : A ⇒ C} + (p : Pushout f g) + (C≅D : C ≅ D) + → Pushout f (_≅_.from C≅D ∘ g) +extend-i₂-iso {_} {_} {_} {_} {f} {g} p C≅D = swap (extend-i₁-iso (swap p) C≅D) |