diff options
Diffstat (limited to 'Category/Instance/Preorders/Primitive.agda')
| -rw-r--r-- | Category/Instance/Preorders/Primitive.agda | 58 |
1 files changed, 0 insertions, 58 deletions
diff --git a/Category/Instance/Preorders/Primitive.agda b/Category/Instance/Preorders/Primitive.agda deleted file mode 100644 index 9c36d03..0000000 --- a/Category/Instance/Preorders/Primitive.agda +++ /dev/null @@ -1,58 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Category.Instance.Preorders.Primitive where - -open import Categories.Category using (Category) -open import Categories.Category.Helper using (categoryHelper) -open import Function using (id; _∘_) -open import Level using (Level; _⊔_; suc) -open import Preorder.Primitive using (Preorder; module Isomorphism) -open import Preorder.Primitive.MonotoneMap using (MonotoneMap; _≃_; ≃-isEquivalence; module ≃) - --- The category of primitive preorders and monotone maps - -private - - module _ {c ℓ : Level} where - - identity : {A : Preorder c ℓ} → MonotoneMap A A - identity = record - { map = id - ; mono = id - } - - compose : {A B C : Preorder c ℓ} → MonotoneMap B C → MonotoneMap A B → MonotoneMap A C - compose f g = record - { map = f.map ∘ g.map - ; mono = f.mono ∘ g.mono - } - where - module f = MonotoneMap f - module g = MonotoneMap g - - compose-resp-≃ - : {A B C : Preorder c ℓ} - {f h : MonotoneMap B C} - {g i : MonotoneMap A B} - → f ≃ h - → g ≃ i - → compose f g ≃ compose h i - compose-resp-≃ {C = C} {h = h} {g} f≃h g≃i x = ≅.trans (f≃h (map g x)) (map-resp-≅ h (g≃i x)) - where - open MonotoneMap using (map; mono; map-resp-≅) - open Preorder C - open Isomorphism C - -Preorders : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) -Preorders c ℓ = categoryHelper record - { Obj = Preorder c ℓ - ; _⇒_ = MonotoneMap - ; _≈_ = _≃_ - ; id = identity - ; _∘_ = compose - ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} - ; identityˡ = λ {f = f} → ≃.refl {x = f} - ; identityʳ = λ {f = f} → ≃.refl {x = f} - ; equiv = ≃-isEquivalence - ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} - } |
