aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance/Properties/SymMonCat.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Category/Instance/Properties/SymMonCat.agda')
-rw-r--r--Category/Instance/Properties/SymMonCat.agda166
1 files changed, 166 insertions, 0 deletions
diff --git a/Category/Instance/Properties/SymMonCat.agda b/Category/Instance/Properties/SymMonCat.agda
new file mode 100644
index 0000000..fa15295
--- /dev/null
+++ b/Category/Instance/Properties/SymMonCat.agda
@@ -0,0 +1,166 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --lossy-unification #-}
+
+open import Level using (Level; suc; _⊔_)
+module Category.Instance.Properties.SymMonCat {o ℓ e : Level} where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric as SMNI
+import Categories.Functor.Monoidal.Symmetric {o} {o} {ℓ} {ℓ} {e} {e} as SMF
+
+open import Category.Instance.SymMonCat {o} {ℓ} {e} using (SymMonCat)
+
+open import Categories.Category using (Category; _[_≈_]; _[_∘_])
+open import Categories.Object.Product.Core SymMonCat using (Product)
+open import Categories.Object.Terminal SymMonCat using (Terminal)
+open import Categories.Category.Instance.One using (One)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Category.Cartesian SymMonCat using (Cartesian)
+open import Categories.Category.Cartesian.Bundle using (CartesianCategory)
+open import Categories.Functor.Monoidal.Properties using (idF-SymmetricMonoidal; ∘-SymmetricMonoidal)
+open import Categories.Category.BinaryProducts SymMonCat using (BinaryProducts)
+open import Categories.Functor.Monoidal.Construction.Product
+ using ()
+ renaming
+ ( πˡ-SymmetricMonoidalFunctor to πˡ-SMF
+ ; πʳ-SymmetricMonoidalFunctor to πʳ-SMF
+ ; ※-SymmetricMonoidalFunctor to ※-SMF
+ )
+open import Categories.Category.Monoidal.Construction.Product using (Product-SymmetricMonoidalCategory)
+open import Categories.Category.Product.Properties using () renaming (project₁ to p₁; project₂ to p₂; unique to u)
+open import Data.Product.Base using (_,_; proj₁; proj₂)
+
+open SMF.Lax using (SymmetricMonoidalFunctor)
+open SMNI.Lax using (SymmetricMonoidalNaturalIsomorphism; id; isEquivalence)
+
+module Cone
+ {A B X : SymmetricMonoidalCategory o ℓ e}
+ {F : SymmetricMonoidalFunctor X A}
+ {G : SymmetricMonoidalFunctor X B} where
+
+ module A = SymmetricMonoidalCategory A
+ module B = SymmetricMonoidalCategory B
+ module X = SymmetricMonoidalCategory X
+ module F = SymmetricMonoidalFunctor X A F
+ module G = SymmetricMonoidalFunctor X B G
+
+ A×B : SymmetricMonoidalCategory o ℓ e
+ A×B = (Product-SymmetricMonoidalCategory A B)
+
+ πˡ : SymmetricMonoidalFunctor A×B A
+ πˡ = πˡ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+
+ πʳ : SymmetricMonoidalFunctor A×B B
+ πʳ = πʳ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+
+ module _ where
+ open Category A.U
+ open Equiv
+ open ⇒-Reasoning A.U
+ open ⊗-Reasoning A.monoidal
+ project₁ : SymMonCat [ SymMonCat [ πˡ ∘ ※-SMF F G ] ≈ F ]
+ project₁ = record
+ { U = p₁ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = identityˡ ○ identityʳ
+ ; ⊗-homo-compat = λ { {C} {D} → identityˡ ○ refl⟩∘⟨ sym A.⊗.identity }
+ }
+ }
+ module _ (H : SymmetricMonoidalFunctor X A×B) (eq₁ : SymMonCat [ SymMonCat [ πˡ ∘ H ] ≈ F ]) where
+ private
+ module H = SymmetricMonoidalFunctor X A×B H
+ open SymmetricMonoidalNaturalIsomorphism eq₁
+ ε-compat₁ : ⇐.η X.unit A.∘ F.ε A.≈ H.ε .proj₁
+ ε-compat₁ = refl⟩∘⟨ sym ε-compat ○ cancelˡ (iso.isoˡ X.unit) ○ identityʳ
+ ⊗-homo-compat₁
+ : ∀ {C D}
+ → ⇐.η (X.⊗.₀ (C , D)) ∘ F.⊗-homo.η (C , D)
+ ≈ H.⊗-homo.η (C , D) .proj₁ ∘ A.⊗.₁ (⇐.η C , ⇐.η D)
+ ⊗-homo-compat₁ {C} {D} =
+ insertʳ
+ (sym ⊗-distrib-over-∘
+ ○ iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
+ ○ A.⊗.identity)
+ ○ (pullʳ (sym ⊗-homo-compat)
+ ○ cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
+ ○ identityʳ) ⟩∘⟨refl
+
+ module _ where
+ open Category B.U
+ open Equiv
+ open ⇒-Reasoning B.U
+ open ⊗-Reasoning B.monoidal
+ project₂ : SymMonCat [ SymMonCat [ πʳ ∘ ※-SMF F G ] ≈ G ]
+ project₂ = record
+ { U = p₂ {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F}
+ ; F⇒G-isMonoidal = record
+ { ε-compat = identityˡ ○ identityʳ
+ ; ⊗-homo-compat = λ { {C} {D} → identityˡ ○ refl⟩∘⟨ sym B.⊗.identity }
+ }
+ }
+ module _ (H : SymmetricMonoidalFunctor X A×B) (eq₂ : SymMonCat [ SymMonCat [ πʳ ∘ H ] ≈ G ]) where
+ private
+ module H = SymmetricMonoidalFunctor X A×B H
+ open SymmetricMonoidalNaturalIsomorphism eq₂
+ ε-compat₂ : ⇐.η X.unit ∘ G.ε ≈ H.ε .proj₂
+ ε-compat₂ = refl⟩∘⟨ sym ε-compat ○ cancelˡ (iso.isoˡ X.unit) ○ identityʳ
+ ⊗-homo-compat₂
+ : ∀ {C D}
+ → ⇐.η (X.⊗.₀ (C , D)) ∘ G.⊗-homo.η (C , D)
+ ≈ H.⊗-homo.η (C , D) .proj₂ ∘ B.⊗.₁ (⇐.η C , ⇐.η D)
+ ⊗-homo-compat₂ {C} {D} =
+ insertʳ
+ (sym ⊗-distrib-over-∘
+ ○ iso.isoʳ C ⟩⊗⟨ iso.isoʳ D
+ ○ B.⊗.identity)
+ ○ (pullʳ (sym ⊗-homo-compat)
+ ○ cancelˡ (iso.isoˡ (X.⊗.₀ (C , D)))
+ ○ identityʳ) ⟩∘⟨refl
+
+ unique
+ : (H : SymmetricMonoidalFunctor X A×B)
+ → SymMonCat [ SymMonCat [ πˡ ∘ H ] ≈ F ]
+ → SymMonCat [ SymMonCat [ πʳ ∘ H ] ≈ G ]
+ → SymMonCat [ ※-SMF F G ≈ H ]
+ unique H eq₁ eq₂ = record
+ { U = u {o} {ℓ} {e} {o} {ℓ} {e} {o} {ℓ} {e} {A.U} {B.U} {X.U} {F.F} {G.F} {H.F} eq₁.U eq₂.U
+ ; F⇒G-isMonoidal = record
+ { ε-compat = ε-compat₁ H eq₁ , ε-compat₂ H eq₂
+ ; ⊗-homo-compat = ⊗-homo-compat₁ H eq₁ , ⊗-homo-compat₂ H eq₂
+ }
+ }
+ where
+ module H = SymmetricMonoidalFunctor X A×B H
+ module eq₁ = SymmetricMonoidalNaturalIsomorphism eq₁
+ module eq₂ = SymmetricMonoidalNaturalIsomorphism eq₂
+
+prod-SymMonCat : ∀ {A B} → Product A B
+prod-SymMonCat {A} {B} = record
+ { A×B = Product-SymmetricMonoidalCategory A B
+ ; π₁ = πˡ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+ ; π₂ = πʳ-SMF {o} {ℓ} {e} {o} {ℓ} {e} {A} {B}
+ ; ⟨_,_⟩ = ※-SMF
+ ; project₁ = λ { {X} {f} {g} → Cone.project₁ {A} {B} {X} {f} {g} }
+ ; project₂ = λ { {X} {f} {g} → Cone.project₂ {A} {B} {X} {f} {g} }
+ ; unique = λ { {X} {h} {f} {g} eq₁ eq₂ → Cone.unique {A} {B} {X} {f} {g} h eq₁ eq₂ }
+ }
+
+SymMonCat-BinaryProducts : BinaryProducts
+SymMonCat-BinaryProducts = record { product = prod-SymMonCat }
+
+SymMonCat-Terminal : Terminal
+SymMonCat-Terminal = record
+ { ⊤ = record
+ { U = One
+ ; monoidal = _
+ ; symmetric = _
+ }
+ ; ⊤-is-terminal = _
+ }
+
+SymMonCat-Cartesian : Cartesian
+SymMonCat-Cartesian = record
+ { terminal = SymMonCat-Terminal
+ ; products = SymMonCat-BinaryProducts
+ }