diff options
Diffstat (limited to 'Category/Instance/SymMonPre')
| -rw-r--r-- | Category/Instance/SymMonPre/Primitive.agda | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/Category/Instance/SymMonPre/Primitive.agda b/Category/Instance/SymMonPre/Primitive.agda new file mode 100644 index 0000000..7475719 --- /dev/null +++ b/Category/Instance/SymMonPre/Primitive.agda @@ -0,0 +1,83 @@ +{-# OPTIONS --without-K --safe #-} + +module Category.Instance.SymMonPre.Primitive where + +import Category.Instance.MonoidalPreorders.Primitive as MP using (_≃_; module ≃) + +open import Categories.Category using (Category) +open import Categories.Category.Helper using (categoryHelper) +open import Category.Instance.MonoidalPreorders.Primitive using (MonoidalPreorders) +open import Level using (Level; suc; _⊔_) +open import Preorder.Primitive.Monoidal using (SymmetricMonoidalPreorder; SymmetricMonoidalMonotone) +open import Relation.Binary using (IsEquivalence) + +module _ {c₁ c₂ ℓ₁ ℓ₂ : Level} {A : SymmetricMonoidalPreorder c₁ ℓ₁} {B : SymmetricMonoidalPreorder c₂ ℓ₂} where + + open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) + + -- Pointwise isomorphism of symmetric monoidal monotone maps + _≃_ : (f g : SymmetricMonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) + f ≃ g = mM f MP.≃ mM g + + infix 4 _≃_ + + ≃-isEquivalence : IsEquivalence _≃_ + ≃-isEquivalence = let open MP.≃ in record + { refl = λ {x} → refl {x = mM x} + ; sym = λ {f g} → sym {x = mM f} {y = mM g} + ; trans = λ {f g h} → trans {i = mM f} {j = mM g} {k = mM h} + } + + module ≃ = IsEquivalence ≃-isEquivalence + +private + + identity : {c ℓ : Level} (A : SymmetricMonoidalPreorder c ℓ) → SymmetricMonoidalMonotone A A + identity {c} {ℓ} A = record + { monoidalMonotone = id {monoidalPreorder} + } + where + open SymmetricMonoidalPreorder A using (monoidalPreorder) + open Category (MonoidalPreorders c ℓ) using (id) + + compose + : {c ℓ : Level} + {P Q R : SymmetricMonoidalPreorder c ℓ} + → SymmetricMonoidalMonotone Q R + → SymmetricMonoidalMonotone P Q + → SymmetricMonoidalMonotone P R + compose {c} {ℓ} {R = R} G F = record + { monoidalMonotone = G.monoidalMonotone ∘ F.monoidalMonotone + } + where + module G = SymmetricMonoidalMonotone G + module F = SymmetricMonoidalMonotone F + open Category (MonoidalPreorders c ℓ) using (_∘_) + + compose-resp-≃ + : {c ℓ : Level} + {A B C : SymmetricMonoidalPreorder c ℓ} + {f h : SymmetricMonoidalMonotone B C} + {g i : SymmetricMonoidalMonotone A B} + → f ≃ h + → g ≃ i + → compose f g ≃ compose h i + compose-resp-≃ {C = C} {f = f} {g} {h} {i} = ∘-resp-≈ {f = mM f} {mM g} {mM h} {mM i} + where + open Category (MonoidalPreorders _ _) + open SymmetricMonoidalMonotone using () renaming (monoidalMonotone to mM) + +-- The category of symmetric monoidal preorders +SymMonPre : (c ℓ : Level) → Category (suc (c ⊔ ℓ)) (c ⊔ ℓ) (c ⊔ ℓ) +SymMonPre c ℓ = categoryHelper record + { Obj = SymmetricMonoidalPreorder c ℓ + ; _⇒_ = SymmetricMonoidalMonotone + ; _≈_ = _≃_ + ; id = λ {A} → identity A + ; _∘_ = compose + ; assoc = λ {f = f} {g h} → ≃.refl {x = compose (compose h g) f} + ; identityˡ = λ {f = f} → ≃.refl {x = f} + ; identityʳ = λ {f = f} → ≃.refl {x = f} + ; equiv = ≃-isEquivalence + ; ∘-resp-≈ = λ {f = f} {g h i} → compose-resp-≃ {f = f} {g} {h} {i} + } |
