aboutsummaryrefslogtreecommitdiff
path: root/Category/Instance
diff options
context:
space:
mode:
Diffstat (limited to 'Category/Instance')
-rw-r--r--Category/Instance/Cospans.agda15
-rw-r--r--Category/Instance/DecoratedCospans.agda9
2 files changed, 12 insertions, 12 deletions
diff --git a/Category/Instance/Cospans.agda b/Category/Instance/Cospans.agda
index 0dee26c..d54499d 100644
--- a/Category/Instance/Cospans.agda
+++ b/Category/Instance/Cospans.agda
@@ -10,7 +10,7 @@ module Category.Instance.Cospans {o ℓ e} (𝒞 : FinitelyCocompleteCategory o
open FinitelyCocompleteCategory 𝒞
open import Categories.Diagram.Pushout U using (Pushout)
-open import Categories.Diagram.Pushout.Properties U using (pushout-resp-≈)
+open import Categories.Diagram.Pushout.Properties U using (pushout-resp-≈; up-to-iso)
open import Categories.Morphism U using (_≅_; module ≅)
open import Categories.Morphism.Reasoning U
using
@@ -22,7 +22,6 @@ open import Categories.Morphism.Reasoning U
open import Category.Diagram.Pushout U 
using
( glue-i₁ ; glue-i₂
- ; up-to-iso
; pushout-f-id ; pushout-id-g
; extend-i₁-iso ; extend-i₂-iso
)
@@ -47,8 +46,8 @@ compose c₁ c₂ = record { f₁ = p.i₁ ∘ C₁.f₁ ; f₂ = p.i₂ ∘ C
module C₂ = Cospan c₂
module p = pushout C₁.f₂ C₂.f₁
-identity : Cospan A A
-identity = record { f₁ = id ; f₂ = id }
+id-Cospan : Cospan A A
+id-Cospan = record { f₁ = id ; f₂ = id }
compose-3 : Cospan A B → Cospan B C → Cospan C D → Cospan A D
compose-3 c₁ c₂ c₃ = record { f₁ = P₃.i₁ ∘ P₁.i₁ ∘ C₁.f₁ ; f₂ = P₃.i₂ ∘ P₂.i₂ ∘ C₃.f₂ }
@@ -101,7 +100,7 @@ same-trans C≈C′ C′≈C″ = record
module C≈C′ = Same C≈C′
module C′≈C″ = Same C′≈C″
-compose-idˡ : {C : Cospan A B} → Same (compose C identity) C
+compose-idˡ : {C : Cospan A B} → Same (compose C id-Cospan) C
compose-idˡ {_} {_} {C} = record
{ ≅N = ≅P
; from∘f₁≈f₁′ = begin
@@ -123,7 +122,7 @@ compose-idˡ {_} {_} {C} = record
≅P = up-to-iso P P′
module ≅P = _≅_ ≅P
-compose-idʳ : {C : Cospan A B} → Same (compose identity C) C
+compose-idʳ : {C : Cospan A B} → Same (compose id-Cospan C) C
compose-idʳ {_} {_} {C} = record
{ ≅N = ≅P
; from∘f₁≈f₁′ = begin
@@ -145,7 +144,7 @@ compose-idʳ {_} {_} {C} = record
≅P = up-to-iso P P′
module ≅P = _≅_ ≅P
-compose-id² : Same {A} (compose identity identity) identity
+compose-id² : Same {A} (compose id-Cospan id-Cospan) id-Cospan
compose-id² = compose-idˡ
compose-3-right
@@ -264,7 +263,7 @@ Cospans = record
{ Obj = Obj
; _⇒_ = Cospan
; _≈_ = Same
- ; id = identity
+ ; id = id-Cospan
; _∘_ = flip compose
; assoc = compose-assoc
; sym-assoc = compose-sym-assoc
diff --git a/Category/Instance/DecoratedCospans.agda b/Category/Instance/DecoratedCospans.agda
index 3f9b6ee..c0c62c7 100644
--- a/Category/Instance/DecoratedCospans.agda
+++ b/Category/Instance/DecoratedCospans.agda
@@ -23,6 +23,7 @@ import Category.Instance.Cospans 𝒞 as Cospans
open import Categories.Category using (Category; _[_∘_])
open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
open import Categories.Diagram.Pushout using (Pushout)
+open import Categories.Diagram.Pushout.Properties 𝒞.U using (up-to-iso)
open import Categories.Functor.Properties using ([_]-resp-≅)
open import Categories.Morphism.Reasoning using (switch-fromtoˡ; glueTrianglesˡ)
open import Cospan.Decorated 𝒞 F using (DecoratedCospan)
@@ -30,7 +31,7 @@ open import Data.Product using (_,_)
open import Function using (flip)
open import Level using (_⊔_)
-open import Category.Diagram.Pushout 𝒞.U using (glue-i₁; glue-i₂; pushout-id-g; pushout-f-id; up-to-iso)
+open import Category.Diagram.Pushout 𝒞.U using (glue-i₁; glue-i₂; pushout-id-g; pushout-f-id)
import Category.Monoidal.Coherence as Coherence
@@ -66,7 +67,7 @@ compose c₁ c₂ = record
identity : DecoratedCospan A A
identity = record
- { cospan = Cospans.identity
+ { cospan = Cospans.id-Cospan
; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε ]
}
@@ -629,8 +630,8 @@ compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = re
F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ (F₁ N⇒ ∘ s) ⊗₁ (F₁ M⇒ ∘ t) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ≅C₁.same-deco ⟩⊗⟨ ≅C₂.same-deco ⟩∘⟨refl ⟩
F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐ ∎
-Cospans : Category o (o ⊔ ℓ ⊔ ℓ′) (ℓ ⊔ e ⊔ e′)
-Cospans = record
+DecoratedCospans : Category o (o ⊔ ℓ ⊔ ℓ′) (ℓ ⊔ e ⊔ e′)
+DecoratedCospans = record
{ Obj = 𝒞.Obj
; _⇒_ = DecoratedCospan
; _≈_ = Same