diff options
Diffstat (limited to 'Category/Instance')
-rw-r--r-- | Category/Instance/DecoratedCospans.agda | 130 |
1 files changed, 65 insertions, 65 deletions
diff --git a/Category/Instance/DecoratedCospans.agda b/Category/Instance/DecoratedCospans.agda index 92a1de9..3f9b6ee 100644 --- a/Category/Instance/DecoratedCospans.agda +++ b/Category/Instance/DecoratedCospans.agda @@ -1,18 +1,18 @@ {-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) -open import Categories.Functor.Monoidal.Symmetric using (module Strong) +open import Categories.Functor.Monoidal.Symmetric using (module Lax) open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) -open Strong using (SymmetricMonoidalFunctor) +open Lax using (SymmetricMonoidalFunctor) open FinitelyCocompleteCategory using () renaming (symmetricMonoidalCategory to smc) module Category.Instance.DecoratedCospans - {o ℓ e} + {o o′ ℓ ℓ′ e e′} (𝒞 : FinitelyCocompleteCategory o ℓ e) - {𝒟 : SymmetricMonoidalCategory o ℓ e} + {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′} (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where module 𝒞 = FinitelyCocompleteCategory 𝒞 @@ -60,17 +60,17 @@ compose c₁ c₂ = record module p = 𝒞.pushout C₁.f₂ C₂.f₁ open p using (i₁; i₂) φ : F₀ C₁.N ⊗₀ F₀ C₂.N ⇒ F₀ (C₁.N + C₂.N) - φ = ⊗-homo.⇒.η (C₁.N , C₂.N) + φ = ⊗-homo.η (C₁.N , C₂.N) s⊗t : unit ⇒ F₀ C₁.N ⊗₀ F₀ C₂.N s⊗t = C₁.decoration ⊗₁ C₂.decoration ∘ unitorʳ.to identity : DecoratedCospan A A identity = record { cospan = Cospans.identity - ; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε.from ] + ; decoration = 𝒟.U [ F₁ 𝒞.initial.! ∘ ε ] } -record Same (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e) where +record Same (C₁ C₂ : DecoratedCospan A B) : Set (ℓ ⊔ e ⊔ e′) where module C₁ = DecoratedCospan C₁ module C₂ = DecoratedCospan C₂ @@ -155,8 +155,8 @@ compose-assoc {_} {_} {_} {_} {c₁} {c₂} {c₃} = record P = C₃.N Q = P₁.Q R = P₂.Q - φ = ⊗-homo.⇒.η - φ-commute = ⊗-homo.⇒.commute + φ = ⊗-homo.η + φ-commute = ⊗-homo.commute a = C₁.f₂ b = C₂.f₁ @@ -406,8 +406,8 @@ compose-idʳ {A} {_} {C} = record open ⊗-Reasoning monoidal open ⇒-Reasoning U - φ = ⊗-homo.⇒.η - φ-commute = ⊗-homo.⇒.commute + φ = ⊗-homo.η + φ-commute = ⊗-homo.commute module λ≅ = unitorˡ λ⇒ = λ≅.from @@ -420,33 +420,33 @@ compose-idʳ {A} {_} {C} = record s : unit ⇒ F₀ N s = decoration - cohere-s : φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈ F₁ ⊥+A≅A.to ∘ s + cohere-s : φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈ F₁ ⊥+A≅A.to ∘ s cohere-s = begin - φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ identityˡ ⟨ - id ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨ - F₁ id′ ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨ - F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩ - F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩ - F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ id) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩ - F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ (⊥ , N) ∘ (ε.from ⊗₁ id)) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩ - F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨ - F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨ - F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ λ≅.isoʳ ⟩ - F₁ ⊥+A≅A.to ∘ s ∎ - - deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈ s + φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ identityˡ ⟨ + id ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨ + F₁ id′ ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ F-resp-≈ ⊥+A≅A.isoˡ ⟩∘⟨refl ⟨ + F₁ (⊥+A≅A.to ∘′ ⊥+A≅A.from) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩ + F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩ + F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ φ (⊥ , N) ∘ (ε ⊗₁ id) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩ + F₁ ⊥+A≅A.to ∘ F₁ ⊥+A≅A.from ∘ (φ (⊥ , N) ∘ (ε ⊗₁ id)) ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryˡ ⟩ + F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ λ₁≅ρ₁⇐ ⟨ + F₁ ⊥+A≅A.to ∘ λ⇒ ∘ (id ⊗₁ s) ∘ λ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ 𝒟.unitorˡ-commute-to ⟨ + F₁ ⊥+A≅A.to ∘ λ⇒ ∘ λ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ λ≅.isoʳ ⟩ + F₁ ⊥+A≅A.to ∘ s ∎ + + deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈ s deco-id = begin - F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε.from) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ id) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , id′)) ⟩ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ - F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ (⊥ , N) ∘ (ε.from ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩ - F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨ - F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩ - F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩ - id ∘ s ≈⟨ identityˡ ⟩ - s ∎ + F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ id) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ F-identity ⟩∘⟨refl ⟨ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (A , N) ∘ (F₁ ¡ ⊗₁ F₁ id′) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , id′)) ⟩ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (¡ +₁ id′) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ + F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ φ (⊥ , N) ∘ (ε ⊗₁ s) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩ + F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘ F₁ ⊥+A≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨ + F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (¡ +₁ id′)) ∘′ ⊥+A≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩ + F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩ + id ∘ s ≈⟨ identityˡ ⟩ + s ∎ compose-idˡ : {C : DecoratedCospan A B} → Same (compose C identity) C compose-idˡ {_} {B} {C} = record @@ -522,8 +522,8 @@ compose-idˡ {_} {B} {C} = record open ⊗-Reasoning monoidal open ⇒-Reasoning U - φ = ⊗-homo.⇒.η - φ-commute = ⊗-homo.⇒.commute + φ = ⊗-homo.η + φ-commute = ⊗-homo.commute module ρ≅ = unitorʳ ρ⇒ = ρ≅.from @@ -532,32 +532,32 @@ compose-idˡ {_} {B} {C} = record s : unit ⇒ F₀ N s = decoration - cohere-s : φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈ F₁ A+⊥≅A.to ∘ s + cohere-s : φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈ F₁ A+⊥≅A.to ∘ s cohere-s = begin - φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ identityˡ ⟨ - id ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨ - F₁ id′ ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨ - F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩ - F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩ - F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (id ⊗₁ ε.from) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩ - F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ (N , ⊥) ∘ (id ⊗₁ ε.from)) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩ - F₁ A+⊥≅A.to ∘ ρ⇒ ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨ - F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ ρ≅.isoʳ ⟩ - F₁ A+⊥≅A.to ∘ s ∎ - - deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈ s + φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ identityˡ ⟨ + id ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-identity ⟩∘⟨refl ⟨ + F₁ id′ ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ F-resp-≈ A+⊥≅A.isoˡ ⟩∘⟨refl ⟨ + F₁ (A+⊥≅A.to ∘′ A+⊥≅A.from) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟩ + F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩ + F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ φ (N , ⊥) ∘ (id ⊗₁ ε) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym-assoc ⟩ + F₁ A+⊥≅A.to ∘ F₁ A+⊥≅A.from ∘ (φ (N , ⊥) ∘ (id ⊗₁ ε)) ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ pullˡ unitaryʳ ⟩ + F₁ A+⊥≅A.to ∘ ρ⇒ ∘ (s ⊗₁ id) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ unitorʳ-commute-to ⟨ + F₁ A+⊥≅A.to ∘ ρ⇒ ∘ ρ⇐ ∘ s ≈⟨ refl⟩∘⟨ cancelˡ ρ≅.isoʳ ⟩ + F₁ A+⊥≅A.to ∘ s ∎ + + deco-id : F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈ s deco-id = begin - F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (id ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (F₁ id′ ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , ¡)) ⟩ - F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ - F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε.from) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩ - F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨ - F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩ - F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩ - id ∘ s ≈⟨ identityˡ ⟩ - s ∎ + F₁ ≅P.from ∘ F₁ [ i₁ , i₂ ] ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (id ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ F-identity ⟩⊗⟨refl ⟩∘⟨refl ⟨ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ φ (N , B) ∘ (F₁ id′ ⊗₁ F₁ ¡) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (id′ , ¡)) ⟩ + F₁ (≅P.from ∘′ [ i₁ , i₂ ]) ∘ F₁ (id′ +₁ ¡) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ pushˡ homomorphism ⟨ + F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ φ (N , ⊥) ∘ (s ⊗₁ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ cohere-s ⟩ + F₁ ((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘ F₁ A+⊥≅A.to ∘ s ≈⟨ pushˡ homomorphism ⟨ + F₁ (((≅P.from ∘′ [ i₁ , i₂ ]) ∘′ (id′ +₁ ¡)) ∘′ A+⊥≅A.to) ∘ s ≈⟨ F-resp-≈ copairing-id ⟩∘⟨refl ⟩ + F₁ id′ ∘ s ≈⟨ F-identity ⟩∘⟨refl ⟩ + id ∘ s ≈⟨ identityˡ ⟩ + s ∎ compose-id² : Same {A} (compose identity identity) identity compose-id² = compose-idˡ @@ -595,8 +595,8 @@ compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = re N′ = C₁′.N M′ = C₂′.N - φ = ⊗-homo.⇒.η - φ-commute = ⊗-homo.⇒.commute + φ = ⊗-homo.η + φ-commute = ⊗-homo.commute Q⇒ = ≅C₂∘C₁.≅N.from N⇒ = ≅C₁.≅N.from @@ -629,7 +629,7 @@ compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≅C₂ ≅C₁ = re F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ (F₁ N⇒ ∘ s) ⊗₁ (F₁ M⇒ ∘ t) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ ≅C₁.same-deco ⟩⊗⟨ ≅C₂.same-deco ⟩∘⟨refl ⟩ F₁ [ P′.i₁ , P′.i₂ ] ∘ φ (N′ , M′) ∘ s′ ⊗₁ t′ ∘ ρ⇐ ∎ -Cospans : Category o (o ⊔ ℓ) (ℓ ⊔ e) +Cospans : Category o (o ⊔ ℓ ⊔ ℓ′) (ℓ ⊔ e ⊔ e′) Cospans = record { Obj = 𝒞.Obj ; _⇒_ = DecoratedCospan |