aboutsummaryrefslogtreecommitdiff
path: root/Category/Monoidal/Instance/Cospans.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Category/Monoidal/Instance/Cospans.agda')
-rw-r--r--Category/Monoidal/Instance/Cospans.agda15
1 files changed, 7 insertions, 8 deletions
diff --git a/Category/Monoidal/Instance/Cospans.agda b/Category/Monoidal/Instance/Cospans.agda
index 228ddea..a1648db 100644
--- a/Category/Monoidal/Instance/Cospans.agda
+++ b/Category/Monoidal/Instance/Cospans.agda
@@ -18,8 +18,9 @@ open import Categories.Category.Monoidal.Core using (Monoidal)
open import Categories.Functor using (Functor)
open import Categories.Functor.Properties using ([_]-resp-≅)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
-open import Category.Instance.Cospans 𝒞 using (Cospans; Cospan)
-open import Category.Instance.Properties.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Diagram.Cospan using (Cospan; cospan)
+open import Category.Cartesian.Instance.FinitelyCocompletes {o} {ℓ} {e} using (FinitelyCocompletes-CC)
open import Category.Monoidal.Instance.Cospans.Lift {o} {ℓ} {e} using (module Square)
open import Data.Product.Base using (_,_)
open import Functor.Instance.Cospan.Stack 𝒞 using (⊗)
@@ -61,7 +62,6 @@ CospansMonoidal = record
; pentagon = pentagon
}
where
- module ⊗ = Functor ⊗
module Cospans = Category Cospans
module Unitorˡ = Square ⊥+--id
module Unitorʳ = Square -+⊥-id
@@ -83,16 +83,15 @@ CospansMonoidal = record
CospansBraided : Braided CospansMonoidal
CospansBraided = record
{ braiding = niHelper record
- { η = λ { (X , Y) → Braiding.FX≅GX′.from {X , Y} }
- ; η⁻¹ = λ { (Y , X) → Braiding.FX≅GX′.to {Y , X} }
- ; commute = λ { {X , Y} {X′ , Y′} (f , g) → Braiding.from (record { f₁ = f₁ f , f₁ g ; f₂ = f₂ f , f₂ g }) }
- ; iso = λ { (X , Y) → Braiding.FX≅GX′.iso {X , Y} }
+ { η = λ (X , Y) → Braiding.FX≅GX′.from {X , Y}
+ ; η⁻¹ = λ (Y , X) → Braiding.FX≅GX′.to {Y , X}
+ ; commute = λ (cospan f₁ f₂ , cospan g₁ g₂) → Braiding.from (cospan (f₁ , g₁) (f₂ , g₂))
+ ; iso = λ (X , Y) → Braiding.FX≅GX′.iso {X , Y}
}
; hexagon₁ = sym L-resp-⊗ ⟩∘⟨ refl ⟩∘⟨ sym L-resp-⊗ ○ refl⟩∘⟨ sym homomorphism ○ sym homomorphism ○ L-resp-≈ hex₁ ○ homomorphism ○ refl⟩∘⟨ homomorphism
; hexagon₂ = sym L-resp-⊗ ⟩∘⟨refl ⟩∘⟨ sym L-resp-⊗ ○ sym homomorphism ⟩∘⟨refl ○ sym homomorphism ○ L-resp-≈ hex₂ ○ homomorphism ○ homomorphism ⟩∘⟨refl
}
where
- open Cospan
module Cospans = Category Cospans
open Cospans.Equiv
open Cospans.HomReasoning