diff options
Diffstat (limited to 'Category/Monoidal/Instance/Cospans/Lift.agda')
| -rw-r--r-- | Category/Monoidal/Instance/Cospans/Lift.agda | 15 |
1 files changed, 8 insertions, 7 deletions
diff --git a/Category/Monoidal/Instance/Cospans/Lift.agda b/Category/Monoidal/Instance/Cospans/Lift.agda index fa31fcb..c7e7516 100644 --- a/Category/Monoidal/Instance/Cospans/Lift.agda +++ b/Category/Monoidal/Instance/Cospans/Lift.agda @@ -4,7 +4,7 @@ open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategor module Category.Monoidal.Instance.Cospans.Lift {o ℓ e} where -open import Category.Instance.Cospans using (Cospans; Cospan; Same) +open import Category.Instance.Cospans using (Cospans) open import Categories.Category.Core using (Category) @@ -16,6 +16,7 @@ import Category.Diagram.Pushout as PushoutDiagram′ import Functor.Instance.Cospan.Embed as CospanEmbed open import Categories.Category using (_[_,_]; _[_≈_]; _[_∘_]; module Definitions) +open import Category.Diagram.Cospan using (Cospan; cospan) open import Categories.Functor.Core using (Functor) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_) @@ -26,7 +27,7 @@ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} {𝒟 : FinitelyCocompleteC module 𝒞 = FinitelyCocompleteCategory 𝒞 module 𝒟 = FinitelyCocompleteCategory 𝒟 - open CospanEmbed 𝒟 using (L; B₁; B∘L; R∘B; ≅-L-R) + open CospanEmbed 𝒟 using (L; B∘L; R∘B; ≅-L-R) module Square {F G : Functor 𝒞.U 𝒟.U} (F≃G : F ≃ G) where @@ -51,21 +52,21 @@ module _ {𝒞 : FinitelyCocompleteCategory o ℓ e} {𝒟 : FinitelyCocompleteC open Cospan fg renaming (f₁ to f; f₂ to g) open 𝒟 using (_∘_) - squares⇒cospan : Cospans 𝒟 [ B₁ (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) ≈ B₁ (F.₁ f) (F.₁ g) ] + squares⇒cospan : Cospans 𝒟 [ cospan (G.₁ f ∘ FX≅GX.from) (G.₁ g ∘ FX≅GX.from) ≈ cospan (F.₁ f) (F.₁ g) ] squares⇒cospan = record { ≅N = ≅.sym 𝒟.U FX≅GX - ; from∘f₁≈f₁′ = sym (switch-fromtoˡ FX≅GX (⇒.commute f)) - ; from∘f₂≈f₂′ = sym (switch-fromtoˡ FX≅GX (⇒.commute g)) + ; from∘f₁≈f₁ = sym (switch-fromtoˡ FX≅GX (⇒.commute f)) + ; from∘f₂≈f₂ = sym (switch-fromtoˡ FX≅GX (⇒.commute g)) } where open 𝒟.Equiv using (sym) - from : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇒.η Y) ∘ B₁ (F.₁ f) (F.₁ g) ] ≈ Cospans 𝒟 [ B₁ (G.₁ f) (G.₁ g) ∘ L.₁ (⇒.η X) ] ] + from : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇒.η Y) ∘ cospan (F.₁ f) (F.₁ g) ] ≈ Cospans 𝒟 [ cospan (G.₁ f) (G.₁ g) ∘ L.₁ (⇒.η X) ] ] from = sym (switch-tofromˡ FX≅GX′ (refl⟩∘⟨ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan)) where open Cospans.Equiv using (sym) - to : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇐.η Y) ∘ B₁ (G.₁ f) (G.₁ g) ] ≈ Cospans 𝒟 [ B₁ (F.₁ f) (F.₁ g) ∘ L.₁ (⇐.η X) ] ] + to : Cospans 𝒟 [ Cospans 𝒟 [ L.₁ (⇐.η Y) ∘ cospan (G.₁ f) (G.₁ g) ] ≈ Cospans 𝒟 [ cospan (F.₁ f) (F.₁ g) ∘ L.₁ (⇐.η X) ] ] to = switch-fromtoʳ FX≅GX′ (pullʳ B∘L ○ ≅-L-R FX≅GX ⟩∘⟨refl ○ R∘B ○ squares⇒cospan) where open ⇒-Reasoning (Cospans 𝒟) using (pullʳ) |
