diff options
Diffstat (limited to 'Category')
| -rw-r--r-- | Category/Instance/MonoidalPreorders.agda | 75 | ||||
| -rw-r--r-- | Category/Instance/Preorders.agda | 36 |
2 files changed, 93 insertions, 18 deletions
diff --git a/Category/Instance/MonoidalPreorders.agda b/Category/Instance/MonoidalPreorders.agda new file mode 100644 index 0000000..6bdeb3f --- /dev/null +++ b/Category/Instance/MonoidalPreorders.agda @@ -0,0 +1,75 @@ +{-# OPTIONS --without-K --safe #-} + +module Category.Instance.MonoidalPreorders where + +import Category.Instance.Preorders as MonotoneMap using (_≗_; module ≗) +import Relation.Binary.Morphism.Construct.Composition as Comp +import Relation.Binary.Morphism.Construct.Identity as Id + +open import Categories.Category using (Category) +open import Categories.Category.Helper using (categoryHelper) +open import Level using (Level; suc; _⊔_) +open import Preorder.Monoidal using (MonoidalPreorder; MonoidalMonotone) +open import Relation.Binary using (IsEquivalence) + +private + + identity : {c ℓ e : Level} (A : MonoidalPreorder c ℓ e) → MonoidalMonotone A A + identity A = let open MonoidalPreorder A in record + { F = Id.preorderHomomorphism U + ; ε = refl {unit} + ; ⊗-homo = λ p₁ p₂ → refl {p₁ ⊗ p₂} + } + + compose + : {c ℓ e : Level} + {P Q R : MonoidalPreorder c ℓ e} + → MonoidalMonotone Q R + → MonoidalMonotone P Q + → MonoidalMonotone P R + compose {R = R} G F = record + { F = Comp.preorderHomomorphism F.F G.F + ; ε = trans G.ε (G.mono F.ε) + ; ⊗-homo = λ p₁ p₂ → trans (G.⊗-homo F.⟦ p₁ ⟧ F.⟦ p₂ ⟧) (G.mono (F.⊗-homo p₁ p₂)) + } + where + module F = MonoidalMonotone F + module G = MonoidalMonotone G + open MonoidalPreorder R + +module _ {c₁ c₂ ℓ₁ ℓ₂ e₁ e₂ : Level} {A : MonoidalPreorder c₁ ℓ₁ e₁} {B : MonoidalPreorder c₂ ℓ₂ e₂} where + + -- Pointwise equality of monoidal monotone maps + + open MonoidalMonotone using (F) + + _≗_ : (f g : MonoidalMonotone A B) → Set (c₁ ⊔ ℓ₂) + f ≗ g = F f MonotoneMap.≗ F g + + infix 4 _≗_ + + ≗-isEquivalence : IsEquivalence _≗_ + ≗-isEquivalence = let open MonotoneMap.≗ in record + { refl = λ {x} → refl {x = F x} + ; sym = λ {f g} → sym {x = F f} {y = F g} + ; trans = λ {f g h} → trans {i = F f} {j = F g} {k = F h} + } + + module ≗ = IsEquivalence ≗-isEquivalence + +MonoidalPreorders : (c ℓ e : Level) → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ) +MonoidalPreorders c ℓ e = categoryHelper record + { Obj = MonoidalPreorder c ℓ e + ; _⇒_ = MonoidalMonotone + ; _≈_ = _≗_ + ; id = λ {A} → identity A + ; _∘_ = λ {A B C} f g → compose f g + ; assoc = λ {_ _ _ D _ _ _ _} → Eq.refl D + ; identityˡ = λ {_ B _ _} → Eq.refl B + ; identityʳ = λ {_ B _ _} → Eq.refl B + ; equiv = ≗-isEquivalence + ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i) + } + where + open MonoidalMonotone using (F; cong) + open MonoidalPreorder using (U; refl; module Eq) diff --git a/Category/Instance/Preorders.agda b/Category/Instance/Preorders.agda index 7dde3af..6d69eda 100644 --- a/Category/Instance/Preorders.agda +++ b/Category/Instance/Preorders.agda @@ -24,27 +24,27 @@ module _ {c₁ c₂ ℓ₁ ℓ₂ e₁ e₂ : Level} {A : Preorder c₁ ℓ₁ e ≗-isEquivalence : IsEquivalence _≗_ ≗-isEquivalence = record - { refl = Eq.refl B - ; sym = λ f≈g → Eq.sym B f≈g - ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h - } + { refl = Eq.refl B + ; sym = λ f≈g → Eq.sym B f≈g + ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h + } module ≗ = IsEquivalence ≗-isEquivalence -- The category of preorders and monotone maps -Preorders : ∀ c ℓ e → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ) +Preorders : (c ℓ e : Level) → Category (suc (c ⊔ ℓ ⊔ e)) (c ⊔ ℓ ⊔ e) (c ⊔ ℓ) Preorders c ℓ e = record - { Obj = Preorder c ℓ e - ; _⇒_ = PreorderHomomorphism - ; _≈_ = _≗_ - ; id = λ {A} → Id.preorderHomomorphism A - ; _∘_ = λ f g → Comp.preorderHomomorphism g f - ; assoc = λ {_ _ _ D} → Eq.refl D - ; sym-assoc = λ {_ _ _ D} → Eq.refl D - ; identityˡ = λ {_ B} → Eq.refl B - ; identityʳ = λ {_ B} → Eq.refl B - ; identity² = λ {A} → Eq.refl A - ; equiv = ≗-isEquivalence - ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i) - } + { Obj = Preorder c ℓ e + ; _⇒_ = PreorderHomomorphism + ; _≈_ = _≗_ + ; id = λ {A} → Id.preorderHomomorphism A + ; _∘_ = λ f g → Comp.preorderHomomorphism g f + ; assoc = λ {_ _ _ D} → Eq.refl D + ; sym-assoc = λ {_ _ _ D} → Eq.refl D + ; identityˡ = λ {_ B} → Eq.refl B + ; identityʳ = λ {_ B} → Eq.refl B + ; identity² = λ {A} → Eq.refl A + ; equiv = ≗-isEquivalence + ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (cong h g≈i) + } |
