aboutsummaryrefslogtreecommitdiff
path: root/Coeq.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Coeq.agda')
-rw-r--r--Coeq.agda6
1 files changed, 3 insertions, 3 deletions
diff --git a/Coeq.agda b/Coeq.agda
index 19523b0..f53958b 100644
--- a/Coeq.agda
+++ b/Coeq.agda
@@ -5,7 +5,7 @@ module Coeq {o ℓ e} (C : Category o ℓ e) where
open import Categories.Diagram.Coequalizer C using (IsCoequalizer)
open import Categories.Object.Coproduct C using (Coproduct; IsCoproduct; IsCoproduct⇒Coproduct)
-open import Categories.Morphism.Reasoning.Core C using (pullˡ; pushˡ; extendˡ; extendʳ; assoc²')
+open import Categories.Morphism.Reasoning.Core C using (pullˡ; pushˡ; extendˡ; extendʳ; assoc²βε; assoc²εβ)
open import Function using (_$_)
open Category C
@@ -33,9 +33,9 @@ coequalizer-on-coproduct {C = C} {Q₁} {Q₂} {f = f} {g} {q₁} {q₂} coprod
module X₂ = IsCoequalizer coeq₂
open Coproduct (IsCoproduct⇒Coproduct coprod) using (g-η; [_,_]; unique; i₁; i₂)
on-i₁ : (q₂ ∘ q₁ ∘ f) ∘ i₁ ≈ (q₂ ∘ q₁ ∘ g) ∘ i₁
- on-i₁ = assoc²' ○ refl⟩∘⟨ X₁.equality ○ Equiv.sym assoc²'
+ on-i₁ = assoc²βε ○ refl⟩∘⟨ X₁.equality ○ assoc²εβ
on-i₂ : (q₂ ∘ q₁ ∘ f) ∘ i₂ ≈ (q₂ ∘ q₁ ∘ g) ∘ i₂
- on-i₂ = assoc²' ○ X₂.equality ○ Equiv.sym assoc²'
+ on-i₂ = assoc²βε ○ X₂.equality ○ assoc²εβ
equality : q₂ ∘ q₁ ∘ f ≈ q₂ ∘ q₁ ∘ g
equality = begin
q₂ ∘ q₁ ∘ f ≈⟨ unique on-i₁ on-i₂ ⟨