diff options
Diffstat (limited to 'Coeq.agda')
-rw-r--r-- | Coeq.agda | 6 |
1 files changed, 3 insertions, 3 deletions
@@ -5,7 +5,7 @@ module Coeq {o ℓ e} (C : Category o ℓ e) where open import Categories.Diagram.Coequalizer C using (IsCoequalizer) open import Categories.Object.Coproduct C using (Coproduct; IsCoproduct; IsCoproduct⇒Coproduct) -open import Categories.Morphism.Reasoning.Core C using (pullˡ; pushˡ; extendˡ; extendʳ; assoc²') +open import Categories.Morphism.Reasoning.Core C using (pullˡ; pushˡ; extendˡ; extendʳ; assoc²βε; assoc²εβ) open import Function using (_$_) open Category C @@ -33,9 +33,9 @@ coequalizer-on-coproduct {C = C} {Q₁} {Q₂} {f = f} {g} {q₁} {q₂} coprod module X₂ = IsCoequalizer coeq₂ open Coproduct (IsCoproduct⇒Coproduct coprod) using (g-η; [_,_]; unique; i₁; i₂) on-i₁ : (q₂ ∘ q₁ ∘ f) ∘ i₁ ≈ (q₂ ∘ q₁ ∘ g) ∘ i₁ - on-i₁ = assoc²' ○ refl⟩∘⟨ X₁.equality ○ Equiv.sym assoc²' + on-i₁ = assoc²βε ○ refl⟩∘⟨ X₁.equality ○ assoc²εβ on-i₂ : (q₂ ∘ q₁ ∘ f) ∘ i₂ ≈ (q₂ ∘ q₁ ∘ g) ∘ i₂ - on-i₂ = assoc²' ○ X₂.equality ○ Equiv.sym assoc²' + on-i₂ = assoc²βε ○ X₂.equality ○ assoc²εβ equality : q₂ ∘ q₁ ∘ f ≈ q₂ ∘ q₁ ∘ g equality = begin q₂ ∘ q₁ ∘ f ≈⟨ unique on-i₁ on-i₂ ⟨ |