diff options
Diffstat (limited to 'Cospan.agda')
-rw-r--r-- | Cospan.agda | 252 |
1 files changed, 234 insertions, 18 deletions
diff --git a/Cospan.agda b/Cospan.agda index 19c422a..f3bb5f5 100644 --- a/Cospan.agda +++ b/Cospan.agda @@ -11,9 +11,19 @@ open FinitelyCocompleteCategory 𝒞 open import Categories.Diagram.Duality U using (Pushout⇒coPullback) open import Categories.Diagram.Pushout U using (Pushout) -open import Categories.Diagram.Pushout.Properties U using (glue; swap) -open import Categories.Morphism U using (_≅_) +open import Categories.Diagram.Pushout.Properties U using (glue; swap; pushout-resp-≈) +open import Categories.Morphism U using (_≅_; module ≅) open import Categories.Morphism.Duality U using (op-≅⇒≅) +open import Categories.Morphism.Reasoning U using + ( switch-fromtoˡ + ; glueTrianglesˡ + ; id-comm + ; id-comm-sym + ; pullˡ + ; pullʳ + ; assoc²'' + ; assoc²' + ) import Categories.Diagram.Pullback op as Pb using (up-to-iso) @@ -51,12 +61,45 @@ compose-3 c₁ c₂ c₃ = record { f₁ = P₃.i₁ ∘ P₁.i₁ ∘ C₁.f₁ module P₂ = pushout C₂.f₂ C₃.f₁ module P₃ = pushout P₁.i₂ P₂.i₁ -record Same (P P′ : Cospan A B) : Set (ℓ ⊔ e) where +record Same (C C′ : Cospan A B) : Set (ℓ ⊔ e) where + + module C = Cospan C + module C′ = Cospan C′ + + field + ≅N : C.N ≅ C′.N + + open _≅_ ≅N public field - iso : Cospan.N P ≅ Cospan.N P′ - from∘f₁≈f₁′ : _≅_.from iso ∘ Cospan.f₁ P ≈ Cospan.f₁ P′ - from∘f₂≈f₂′ : _≅_.from iso ∘ Cospan.f₂ P ≈ Cospan.f₂ P′ + from∘f₁≈f₁′ : from ∘ C.f₁ ≈ C′.f₁ + from∘f₂≈f₂′ : from ∘ C.f₂ ≈ C′.f₂ + +same-refl : {C : Cospan A B} → Same C C +same-refl = record + { ≅N = ≅.refl + ; from∘f₁≈f₁′ = identityˡ + ; from∘f₂≈f₂′ = identityˡ + } + +same-sym : {C C′ : Cospan A B} → Same C C′ → Same C′ C +same-sym C≅C′ = record + { ≅N = ≅.sym ≅N + ; from∘f₁≈f₁′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₁≈f₁′) + ; from∘f₂≈f₂′ = Equiv.sym (switch-fromtoˡ ≅N from∘f₂≈f₂′) + } + where + open Same C≅C′ + +same-trans : {C C′ C″ : Cospan A B} → Same C C′ → Same C′ C″ → Same C C″ +same-trans C≈C′ C′≈C″ = record + { ≅N = ≅.trans C≈C′.≅N C′≈C″.≅N + ; from∘f₁≈f₁′ = glueTrianglesˡ C′≈C″.from∘f₁≈f₁′ C≈C′.from∘f₁≈f₁′ + ; from∘f₂≈f₂′ = glueTrianglesˡ C′≈C″.from∘f₂≈f₂′ C≈C′.from∘f₂≈f₂′ + } + where + module C≈C′ = Same C≈C′ + module C′≈C″ = Same C′≈C″ glue-i₁ : (p : Pushout f g) → Pushout h (Pushout.i₁ p) → Pushout (h ∘ f) g glue-i₁ p = glue p @@ -67,13 +110,137 @@ glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂)) up-to-iso : (p p′ : Pushout f g) → Pushout.Q p ≅ Pushout.Q p′ up-to-iso p p′ = op-≅⇒≅ (Pb.up-to-iso (Pushout⇒coPullback p) (Pushout⇒coPullback p′)) +id-unique : (p : Pushout f g) → (Pushout.universal p) (Pushout.commute p) ≈ id +id-unique p = Equiv.sym (Pushout.unique p identityˡ identityˡ) + +pushout-f-id : Pushout f id +pushout-f-id {_} {_} {f} = record + { i₁ = id + ; i₂ = f + ; commute = id-comm-sym + ; universal = λ {B} {h₁} {h₂} eq → h₁ + ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₁≈h₁ + ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → identityʳ + ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → eq ○ identityʳ + } + where + open HomReasoning + +pushout-id-g : Pushout id g +pushout-id-g {_} {_} {g} = record + { i₁ = g + ; i₂ = id + ; commute = id-comm + ; universal = λ {B} {h₁} {h₂} eq → h₂ + ; unique = λ {E} {h₁} {h₂} {eq} {j} j∘i₁≈h₁ j∘i₂≈h₂ → Equiv.sym identityʳ ○ j∘i₂≈h₂ + ; universal∘i₁≈h₁ = λ {E} {h₁} {h₂} {eq} → Equiv.sym eq ○ identityʳ + ; universal∘i₂≈h₂ = λ {E} {h₁} {h₂} {eq} → identityʳ + } + where + open HomReasoning + +extend-i₁-iso + : {f : A ⇒ B} + {g : A ⇒ C} + (p : Pushout f g) + (B≅D : B ≅ D) + → Pushout (_≅_.from B≅D ∘ f) g +extend-i₁-iso {_} {_} {_} {_} {f} {g} p B≅D = record + { i₁ = P.i₁ ∘ B≅D.to + ; i₂ = P.i₂ + ; commute = begin + (P.i₁ ∘ B≅D.to) ∘ B≅D.from ∘ f ≈⟨ assoc²'' ⟨ + P.i₁ ∘ (B≅D.to ∘ B≅D.from) ∘ f ≈⟨ refl⟩∘⟨ B≅D.isoˡ ⟩∘⟨refl ⟩ + P.i₁ ∘ id ∘ f ≈⟨ refl⟩∘⟨ identityˡ ⟩ + P.i₁ ∘ f ≈⟨ P.commute ⟩ + P.i₂ ∘ g ∎ + ; universal = λ { eq → P.universal (assoc ○ eq) } + ; unique = λ {_} {h₁} {_} {j} ≈₁ ≈₂ → + let + ≈₁′ = begin + j ∘ P.i₁ ≈⟨ refl⟩∘⟨ identityʳ ⟨ + j ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ refl⟩∘⟨ B≅D.isoˡ ⟨ + j ∘ P.i₁ ∘ B≅D.to ∘ B≅D.from ≈⟨ assoc²' ⟨ + (j ∘ P.i₁ ∘ B≅D.to) ∘ B≅D.from ≈⟨ ≈₁ ⟩∘⟨refl ⟩ + h₁ ∘ B≅D.from ∎ + in P.unique ≈₁′ ≈₂ + ; universal∘i₁≈h₁ = λ {E} {h₁} {_} {eq} → + begin + P.universal (assoc ○ eq) ∘ P.i₁ ∘ B≅D.to ≈⟨ sym-assoc ⟩ + (P.universal (assoc ○ eq) ∘ P.i₁) ∘ B≅D.to ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ + (h₁ ∘ B≅D.from) ∘ B≅D.to ≈⟨ assoc ⟩ + h₁ ∘ B≅D.from ∘ B≅D.to ≈⟨ refl⟩∘⟨ B≅D.isoʳ ⟩ + h₁ ∘ id ≈⟨ identityʳ ⟩ + h₁ ∎ + ; universal∘i₂≈h₂ = P.universal∘i₂≈h₂ + } + where + module P = Pushout p + module B≅D = _≅_ B≅D + open HomReasoning + +extend-i₂-iso + : {f : A ⇒ B} + {g : A ⇒ C} + (p : Pushout f g) + (C≅D : C ≅ D) + → Pushout f (_≅_.from C≅D ∘ g) +extend-i₂-iso {_} {_} {_} {_} {f} {g} p C≅D = swap (extend-i₁-iso (swap p) C≅D) + +compose-idˡ : {C : Cospan A B} → Same (compose C identity) C +compose-idˡ {_} {_} {C} = record + { ≅N = ≅P + ; from∘f₁≈f₁′ = begin + ≅P.from ∘ P.i₁ ∘ C.f₁ ≈⟨ assoc ⟨ + (≅P.from ∘ P.i₁) ∘ C.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ + id ∘ C.f₁ ≈⟨ identityˡ ⟩ + C.f₁ ∎ + ; from∘f₂≈f₂′ = begin + ≅P.from ∘ P.i₂ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ + ≅P.from ∘ P.i₂ ≈⟨ P.universal∘i₂≈h₂ ⟩ + C.f₂ ∎ + } + where + open HomReasoning + module C = Cospan C + P = pushout C.f₂ id + module P = Pushout P + P′ = pushout-f-id {f = C.f₂} + ≅P = up-to-iso P P′ + module ≅P = _≅_ ≅P + +compose-idʳ : {C : Cospan A B} → Same (compose identity C) C +compose-idʳ {_} {_} {C} = record + { ≅N = ≅P + ; from∘f₁≈f₁′ = begin + ≅P.from ∘ P.i₁ ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ + ≅P.from ∘ P.i₁ ≈⟨ P.universal∘i₁≈h₁ ⟩ + C.f₁ ∎ + ; from∘f₂≈f₂′ = begin + ≅P.from ∘ P.i₂ ∘ C.f₂ ≈⟨ assoc ⟨ + (≅P.from ∘ P.i₂) ∘ C.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩ + id ∘ C.f₂ ≈⟨ identityˡ ⟩ + C.f₂ ∎ + } + where + open HomReasoning + module C = Cospan C + P = pushout id C.f₁ + module P = Pushout P + P′ = pushout-id-g {g = C.f₁} + ≅P = up-to-iso P P′ + module ≅P = _≅_ ≅P + +compose-id² : Same {A} (compose identity identity) identity +compose-id² = compose-idˡ + compose-3-right : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose c₁ (compose c₂ c₃)) (compose-3 c₁ c₂ c₃) compose-3-right {_} {_} {_} {_} {c₁} {c₂} {c₃} = record - { iso = up-to-iso P₄′ P₄ + { ≅N = up-to-iso P₄′ P₄ ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ○ assoc ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl } @@ -99,7 +266,7 @@ compose-3-left {c₃ : Cospan C D} → Same (compose (compose c₁ c₂) c₃) (compose-3 c₁ c₂ c₃) compose-3-left {_} {_} {_} {_} {c₁} {c₂} {c₃} = record - { iso = up-to-iso P₄′ P₄ + { ≅N = up-to-iso P₄′ P₄ ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl ○ assoc } @@ -124,27 +291,76 @@ compose-assoc {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose c₁ (compose c₂ c₃)) (compose (compose c₁ c₂) c₃) -compose-assoc = ? +compose-assoc = same-trans compose-3-right (same-sym compose-3-left) compose-sym-assoc : {c₁ : Cospan A B} {c₂ : Cospan B C} {c₃ : Cospan C D} → Same (compose (compose c₁ c₂) c₃) (compose c₁ (compose c₂ c₃)) -compose-sym-assoc = ? +compose-sym-assoc = same-trans compose-3-left (same-sym compose-3-right) + +compose-equiv + : {c₂ c₂′ : Cospan B C} + {c₁ c₁′ : Cospan A B} + → Same c₂ c₂′ + → Same c₁ c₁′ + → Same (compose c₁ c₂) (compose c₁′ c₂′) +compose-equiv {_} {_} {_} {c₂} {c₂′} {c₁} {c₁′} ≈C₂ ≈C₁ = record + { ≅N = up-to-iso P P″ + ; from∘f₁≈f₁′ = begin + ≅P.from ∘ P.i₁ ∘ C₁.f₁ ≈⟨ assoc ⟨ + (≅P.from ∘ P.i₁) ∘ C₁.f₁ ≈⟨ P.universal∘i₁≈h₁ ⟩∘⟨refl ⟩ + (P′.i₁ ∘ ≈C₁.from) ∘ C₁.f₁ ≈⟨ assoc ⟩ + P′.i₁ ∘ ≈C₁.from ∘ C₁.f₁ ≈⟨ refl⟩∘⟨ ≈C₁.from∘f₁≈f₁′ ⟩ + P′.i₁ ∘ C₁′.f₁ ∎ + ; from∘f₂≈f₂′ = begin + ≅P.from ∘ P.i₂ ∘ C₂.f₂ ≈⟨ assoc ⟨ + (≅P.from ∘ P.i₂) ∘ C₂.f₂ ≈⟨ P.universal∘i₂≈h₂ ⟩∘⟨refl ⟩ + (P′.i₂ ∘ ≈C₂.from) ∘ C₂.f₂ ≈⟨ assoc ⟩ + P′.i₂ ∘ ≈C₂.from ∘ C₂.f₂ ≈⟨ refl⟩∘⟨ ≈C₂.from∘f₂≈f₂′ ⟩ + P′.i₂ ∘ C₂′.f₂ ∎ + } + where + module C₁ = Cospan c₁ + module C₁′ = Cospan c₁′ + module C₂ = Cospan c₂ + module C₂′ = Cospan c₂′ + P = pushout C₁.f₂ C₂.f₁ + P′ = pushout C₁′.f₂ C₂′.f₁ + module ≈C₁ = Same ≈C₁ + module ≈C₂ = Same ≈C₂ + P′′ : Pushout (≈C₁.to ∘ C₁′.f₂) (≈C₂.to ∘ C₂′.f₁) + P′′ = extend-i₂-iso (extend-i₁-iso P′ (≅.sym ≈C₁.≅N)) (≅.sym ≈C₂.≅N) + P″ : Pushout C₁.f₂ C₂.f₁ + P″ = + pushout-resp-≈ + P′′ + (Equiv.sym (switch-fromtoˡ ≈C₁.≅N ≈C₁.from∘f₂≈f₂′)) + (Equiv.sym (switch-fromtoˡ ≈C₂.≅N ≈C₂.from∘f₁≈f₁′)) + module P = Pushout P + module P′ = Pushout P′ + ≅P : P.Q ≅ P′.Q + ≅P = up-to-iso P P″ + module ≅P = _≅_ ≅P + open HomReasoning -CospanC : Category _ _ _ -CospanC = record +Cospans : Category o (o ⊔ ℓ) (ℓ ⊔ e) +Cospans = record { Obj = Obj ; _⇒_ = Cospan ; _≈_ = Same ; id = identity ; _∘_ = flip compose - ; assoc = ? + ; assoc = compose-assoc ; sym-assoc = compose-sym-assoc - ; identityˡ = ? - ; identityʳ = {! !} - ; identity² = {! !} - ; equiv = {! !} - ; ∘-resp-≈ = {! !} + ; identityˡ = compose-idˡ + ; identityʳ = compose-idʳ + ; identity² = compose-id² + ; equiv = record + { refl = same-refl + ; sym = same-sym + ; trans = same-trans + } + ; ∘-resp-≈ = compose-equiv } |