aboutsummaryrefslogtreecommitdiff
path: root/Cospan.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Cospan.agda')
-rw-r--r--Cospan.agda62
1 files changed, 44 insertions, 18 deletions
diff --git a/Cospan.agda b/Cospan.agda
index 651d883..19c422a 100644
--- a/Cospan.agda
+++ b/Cospan.agda
@@ -1,19 +1,22 @@
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category)
-open import Categories.Diagram.Pushout using (Pushout)
-open import Categories.Diagram.Pushout.Properties using (glue; swap)
-open import Categories.Object.Coproduct using (Coproduct)
open import Category.Cocomplete.Bundle using (FinitelyCocompleteCategory)
open import Function using (flip)
open import Level using (_⊔_)
-open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym)
-
module Cospan {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where
open FinitelyCocompleteCategory 𝒞
-open import Categories.Morphism U
+
+open import Categories.Diagram.Duality U using (Pushout⇒coPullback)
+open import Categories.Diagram.Pushout U using (Pushout)
+open import Categories.Diagram.Pushout.Properties U using (glue; swap)
+open import Categories.Morphism U using (_≅_)
+open import Categories.Morphism.Duality U using (op-≅⇒≅)
+
+import Categories.Diagram.Pullback op as Pb using (up-to-iso)
+
private
@@ -55,23 +58,22 @@ record Same (P P′ : Cospan A B) : Set (ℓ ⊔ e) where
from∘f₁≈f₁′ : _≅_.from iso ∘ Cospan.f₁ P ≈ Cospan.f₁ P′
from∘f₂≈f₂′ : _≅_.from iso ∘ Cospan.f₂ P ≈ Cospan.f₂ P′
-glue-i₁ : (p : Pushout U f g) → Pushout U h (Pushout.i₁ p) → Pushout U (h ∘ f) g
-glue-i₁ p = glue U p
+glue-i₁ : (p : Pushout f g) → Pushout h (Pushout.i₁ p) → Pushout (h ∘ f) g
+glue-i₁ p = glue p
+
+glue-i₂ : (p₁ : Pushout f g) → Pushout (Pushout.i₂ p₁) h → Pushout f (h ∘ g)
+glue-i₂ p₁ p₂ = swap (glue (swap p₁) (swap p₂))
-glue-i₂ : (p₁ : Pushout U f g) → Pushout U (Pushout.i₂ p₁) h → Pushout U f (h ∘ g)
-glue-i₂ p₁ p₂ = swap U (glue U (swap U p₁) (swap U p₂))
+up-to-iso : (p p′ : Pushout f g) → Pushout.Q p ≅ Pushout.Q p′
+up-to-iso p p′ = op-≅⇒≅ (Pb.up-to-iso (Pushout⇒coPullback p) (Pushout⇒coPullback p′))
compose-3-right
: {c₁ : Cospan A B}
{c₂ : Cospan B C}
{c₃ : Cospan C D}
→ Same (compose c₁ (compose c₂ c₃)) (compose-3 c₁ c₂ c₃)
-compose-3-right {A} {_} {_} {_} {c₁} {c₂} {c₃} = record
- { iso = record
- { from = P₄′.universal P₄.commute
- ; to = P₄.universal P₄′.commute
- ; iso = {! !}
- }
+compose-3-right {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
+ { iso = up-to-iso P₄′ P₄
; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl ○ assoc
; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl
}
@@ -86,13 +88,37 @@ compose-3-right {A} {_} {_} {_} {c₁} {c₂} {c₃} = record
module P₂ = Pushout P₂
P₃ = pushout P₁.i₂ P₂.i₁
module P₃ = Pushout P₃
- P₄ : Pushout U C₁.f₂ (P₂.i₁ ∘ C₂.f₁)
P₄ = glue-i₂ P₁ P₃
module P₄ = Pushout P₄
- P₄′ : Pushout U C₁.f₂ (P₂.i₁ ∘ C₂.f₁)
P₄′ = pushout C₁.f₂ (P₂.i₁ ∘ C₂.f₁)
module P₄′ = Pushout P₄′
+compose-3-left
+ : {c₁ : Cospan A B}
+ {c₂ : Cospan B C}
+ {c₃ : Cospan C D}
+ → Same (compose (compose c₁ c₂) c₃) (compose-3 c₁ c₂ c₃)
+compose-3-left {_} {_} {_} {_} {c₁} {c₂} {c₃} = record
+ { iso = up-to-iso P₄′ P₄
+ ; from∘f₁≈f₁′ = sym-assoc ○ P₄′.universal∘i₁≈h₁ ⟩∘⟨refl
+ ; from∘f₂≈f₂′ = sym-assoc ○ P₄′.universal∘i₂≈h₂ ⟩∘⟨refl ○ assoc
+ }
+ where
+ open HomReasoning
+ module C₁ = Cospan c₁
+ module C₂ = Cospan c₂
+ module C₃ = Cospan c₃
+ P₁ = pushout C₁.f₂ C₂.f₁
+ P₂ = pushout C₂.f₂ C₃.f₁
+ module P₁ = Pushout P₁
+ module P₂ = Pushout P₂
+ P₃ = pushout P₁.i₂ P₂.i₁
+ module P₃ = Pushout P₃
+ P₄ = glue-i₁ P₂ P₃
+ module P₄ = Pushout P₄
+ P₄′ = pushout (P₁.i₂ ∘ C₂.f₂) C₃.f₁
+ module P₄′ = Pushout P₄′
+
compose-assoc
: {c₁ : Cospan A B}
{c₂ : Cospan B C}