aboutsummaryrefslogtreecommitdiff
path: root/Data/Circuit/Merge.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Data/Circuit/Merge.agda')
-rw-r--r--Data/Circuit/Merge.agda427
1 files changed, 427 insertions, 0 deletions
diff --git a/Data/Circuit/Merge.agda b/Data/Circuit/Merge.agda
new file mode 100644
index 0000000..9cf180a
--- /dev/null
+++ b/Data/Circuit/Merge.agda
@@ -0,0 +1,427 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Circuit.Merge where
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Fin.Base using (Fin; pinch; punchIn; punchOut; splitAt)
+open import Data.Fin.Properties using (punchInᵢ≢i; punchIn-punchOut)
+open import Data.Bool.Properties using (if-eta)
+open import Data.Bool using (Bool; if_then_else_)
+open import Data.Circuit.Value using (Value; join; join-comm; join-assoc)
+open import Data.Sum.Properties using ([,]-cong; [,-]-cong; [-,]-cong; [,]-∘; [,]-map)
+open import Data.Subset.Functional
+ using
+ ( Subset
+ ; ⁅_⁆ ; ⊥ ; ⁅⁆∘ρ
+ ; foldl ; foldl-cong₁ ; foldl-cong₂
+ ; foldl-[] ; foldl-suc
+ ; foldl-⊥ ; foldl-⁅⁆
+ ; foldl-fusion
+ )
+open import Data.Vector as V using (Vector; head; tail; removeAt)
+open import Data.Vec.Functional using (_++_)
+open import Data.Fin.Permutation
+ using
+ ( Permutation
+ ; Permutation′
+ ; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_
+ ; inverseˡ ; inverseʳ
+ ; id
+ ; flip
+ ; insert ; remove
+ ; punchIn-permute
+ )
+open import Data.Product using (Σ-syntax; _,_)
+open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂)
+open import Function.Base using (∣_⟩-_; _∘_; case_of_; _$_)
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≢_; _≗_; module ≡-Reasoning)
+
+open Value using (U)
+open ℕ
+open Fin
+open Bool
+
+open ≡-Reasoning
+
+_when_ : Value → Bool → Value
+x when b = if b then x else U
+
+opaque
+ merge-with : {A : ℕ} → Value → Vector Value A → Subset A → Value
+ merge-with e v = foldl (∣ join ⟩- v) e
+
+ merge-with-cong : {A : ℕ} {v₁ v₂ : Vector Value A} (e : Value) → v₁ ≗ v₂ → merge-with e v₁ ≗ merge-with e v₂
+ merge-with-cong e v₁≗v₂ = foldl-cong₁ (λ x → ≡.cong (join x) ∘ v₁≗v₂) e
+
+ merge-with-cong₂ : {A : ℕ} (e : Value) (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge-with e v S₁ ≡ merge-with e v S₂
+ merge-with-cong₂ e v = foldl-cong₂ (∣ join ⟩- v) e
+
+ merge-with-⊥ : {A : ℕ} (e : Value) (v : Vector Value A) → merge-with e v ⊥ ≡ e
+ merge-with-⊥ e v = foldl-⊥ (∣ join ⟩- v) e
+
+ merge-with-[] : (e : Value) (v : Vector Value 0) (S : Subset 0) → merge-with e v S ≡ e
+ merge-with-[] e v = foldl-[] (∣ join ⟩- v) e
+
+ merge-with-suc
+ : {A : ℕ} (e : Value) (v : Vector Value (suc A)) (S : Subset (suc A))
+ → merge-with e v S
+ ≡ merge-with (if head S then join e (head v) else e) (tail v) (tail S)
+ merge-with-suc e v = foldl-suc (∣ join ⟩- v) e
+
+ merge-with-join
+ : {A : ℕ}
+ (x y : Value)
+ (v : Vector Value A)
+ → merge-with (join x y) v ≗ join x ∘ merge-with y v
+ merge-with-join {A} x y v S = ≡.sym (foldl-fusion (join x) fuse y S)
+ where
+ fuse : (acc : Value) (k : Fin A) → join x (join acc (v k)) ≡ join (join x acc) (v k)
+ fuse acc k = ≡.sym (join-assoc x acc (v k))
+
+ merge-with-⁅⁆ : {A : ℕ} (e : Value) (v : Vector Value A) (x : Fin A) → merge-with e v ⁅ x ⁆ ≡ join e (v x)
+ merge-with-⁅⁆ e v = foldl-⁅⁆ (∣ join ⟩- v) e
+
+merge-with-U : {A : ℕ} (e : Value) (S : Subset A) → merge-with e (λ _ → U) S ≡ e
+merge-with-U {zero} e S = merge-with-[] e (λ _ → U) S
+merge-with-U {suc A} e S = begin
+ merge-with e (λ _ → U) S ≡⟨ merge-with-suc e (λ _ → U) S ⟩
+ merge-with
+ (if head S then join e U else e)
+ (tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with (if head S then h else e) _ _) (join-comm e U) ⟩
+ merge-with
+ (if head S then e else e)
+ (tail (λ _ → U)) (tail S) ≡⟨ ≡.cong (λ h → merge-with h (λ _ → U) (tail S)) (if-eta (head S)) ⟩
+ merge-with e (tail (λ _ → U)) (tail S) ≡⟨⟩
+ merge-with e (λ _ → U) (tail S) ≡⟨ merge-with-U e (tail S) ⟩
+ e ∎
+
+merge : {A : ℕ} → Vector Value A → Subset A → Value
+merge v = merge-with U v
+
+merge-cong₁ : {A : ℕ} {v₁ v₂ : Vector Value A} → v₁ ≗ v₂ → merge v₁ ≗ merge v₂
+merge-cong₁ = merge-with-cong U
+
+merge-cong₂ : {A : ℕ} (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge v S₁ ≡ merge v S₂
+merge-cong₂ = merge-with-cong₂ U
+
+merge-⊥ : {A : ℕ} (v : Vector Value A) → merge v ⊥ ≡ U
+merge-⊥ = merge-with-⊥ U
+
+merge-[] : (v : Vector Value 0) (S : Subset 0) → merge v S ≡ U
+merge-[] = merge-with-[] U
+
+merge-[]₂ : {v₁ v₂ : Vector Value 0} {S₁ S₂ : Subset 0} → merge v₁ S₁ ≡ merge v₂ S₂
+merge-[]₂ {v₁} {v₂} {S₁} {S₂} = ≡.trans (merge-[] v₁ S₁) (≡.sym (merge-[] v₂ S₂))
+
+merge-⁅⁆ : {A : ℕ} (v : Vector Value A) (x : Fin A) → merge v ⁅ x ⁆ ≡ v x
+merge-⁅⁆ = merge-with-⁅⁆ U
+
+join-merge : {A : ℕ} (e : Value) (v : Vector Value A) (S : Subset A) → join e (merge v S) ≡ merge-with e v S
+join-merge e v S = ≡.sym (≡.trans (≡.cong (λ h → merge-with h v S) (join-comm U e)) (merge-with-join e U v S))
+
+merge-suc
+ : {A : ℕ} (v : Vector Value (suc A)) (S : Subset (suc A))
+ → merge v S
+ ≡ merge-with (head v when head S) (tail v) (tail S)
+merge-suc = merge-with-suc U
+
+insert-f0-0
+ : {A B : ℕ}
+ (f : Fin (suc A) → Fin (suc B))
+ → Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero)
+insert-f0-0 f = insert (f zero) zero id , help
+ where
+ open import Data.Fin using (_≟_)
+ open import Relation.Nullary.Decidable using (yes; no)
+ help : insert (f zero) zero id ⟨$⟩ʳ f zero ≡ zero
+ help with f zero ≟ f zero
+ ... | yes _ = ≡.refl
+ ... | no f0≢f0 with () ← f0≢f0 ≡.refl
+
+merge-removeAt
+ : {A : ℕ}
+ (k : Fin (suc A))
+ (v : Vector Value (suc A))
+ (S : Subset (suc A))
+ → merge v S ≡ join (v k when S k) (merge (removeAt v k) (removeAt S k))
+merge-removeAt {A} zero v S = begin
+ merge-with U v S ≡⟨ merge-suc v S ⟩
+ merge-with (head v when head S) (tail v) (tail S) ≡⟨ join-merge (head v when head S) (tail v) (tail S) ⟨
+ join (head v when head S) (merge-with U (tail v) (tail S)) ∎
+merge-removeAt {suc A} (suc k) v S = begin
+ merge-with U v S ≡⟨ merge-suc v S ⟩
+ merge-with v0? (tail v) (tail S) ≡⟨ join-merge _ (tail v) (tail S) ⟨
+ join v0? (merge (tail v) (tail S)) ≡⟨ ≡.cong (join v0?) (merge-removeAt k (tail v) (tail S)) ⟩
+ join v0? (join vk? (merge (tail v-) (tail S-))) ≡⟨ join-assoc (head v when head S) _ _ ⟨
+ join (join v0? vk?) (merge (tail v-) (tail S-)) ≡⟨ ≡.cong (λ h → join h (merge (tail v-) (tail S-))) (join-comm (head v- when head S-) _) ⟩
+ join (join vk? v0?) (merge (tail v-) (tail S-)) ≡⟨ join-assoc (tail v k when tail S k) _ _ ⟩
+ join vk? (join v0? (merge (tail v-) (tail S-))) ≡⟨ ≡.cong (join vk?) (join-merge _ (tail v-) (tail S-)) ⟩
+ join vk? (merge-with v0? (tail v-) (tail S-)) ≡⟨ ≡.cong (join vk?) (merge-suc v- S-) ⟨
+ join vk? (merge v- S-) ∎
+ where
+ v0? vk? : Value
+ v0? = head v when head S
+ vk? = tail v k when tail S k
+ v- : Vector Value (suc A)
+ v- = removeAt v (suc k)
+ S- : Subset (suc A)
+ S- = removeAt S (suc k)
+
+import Function.Structures as FunctionStructures
+open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {B} _≡_ using (IsInverse)
+open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ)
+
+merge-preimage-ρ
+ : {A B : ℕ}
+ → (ρ : Permutation A B)
+ → (v : Vector Value A)
+ (S : Subset B)
+ → merge v (preimage (ρ ⟨$⟩ʳ_) S) ≡ merge (v ∘ (ρ ⟨$⟩ˡ_)) S
+merge-preimage-ρ {zero} {zero} ρ v S = merge-[]₂
+merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero
+merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero
+merge-preimage-ρ {suc A} {suc B} ρ v S = begin
+ merge v (preimage ρʳ S) ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S) ⟩
+ join
+ (head (v ∘ ρˡ) when S (ρʳ (ρˡ zero)))
+ (merge v- [preimageρʳS]-) ≡⟨ ≡.cong (λ h → join h (merge v- [preimageρʳS]-)) ≡vρˡ0? ⟩
+ join vρˡ0? (merge v- [preimageρʳS]-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₂ v- preimage-) ⟩
+ join vρˡ0? (merge v- (preimage ρʳ- S-)) ≡⟨ ≡.cong (join vρˡ0?) (merge-preimage-ρ ρ- v- S-) ⟩
+ join vρˡ0? (merge (v- ∘ ρˡ-) S-) ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₁ v∘ρˡ- S-) ⟩
+ join vρˡ0? (merge (tail (v ∘ ρˡ)) S-) ≡⟨ join-merge vρˡ0? (tail (v ∘ ρˡ)) S- ⟩
+ merge-with vρˡ0? (tail (v ∘ ρˡ)) S- ≡⟨ merge-suc (v ∘ ρˡ) S ⟨
+ merge (v ∘ ρˡ) S ∎
+ where
+ ρˡ : Fin (suc B) → Fin (suc A)
+ ρˡ = ρ ⟨$⟩ˡ_
+ ρʳ : Fin (suc A) → Fin (suc B)
+ ρʳ = ρ ⟨$⟩ʳ_
+ ρ- : Permutation A B
+ ρ- = remove (head ρˡ) ρ
+ ρˡ- : Fin B → Fin A
+ ρˡ- = ρ- ⟨$⟩ˡ_
+ ρʳ- : Fin A → Fin B
+ ρʳ- = ρ- ⟨$⟩ʳ_
+ v- : Vector Value A
+ v- = removeAt v (head ρˡ)
+ [preimageρʳS]- : Subset A
+ [preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ)
+ S- : Subset B
+ S- = tail S
+ vρˡ0? : Value
+ vρˡ0? = head (v ∘ ρˡ) when head S
+ ≡vρˡ0?  : head (v ∘ ρˡ) when S (ρʳ (head ρˡ)) ≡ head (v ∘ ρˡ) when head S
+ ≡vρˡ0? = ≡.cong ((head (v ∘ ρˡ) when_) ∘ S) (inverseʳ ρ)
+ v∘ρˡ- : v- ∘ ρˡ- ≗ tail (v ∘ ρˡ)
+ v∘ρˡ- x = begin
+ v- (ρˡ- x) ≡⟨⟩
+ v (punchIn (head ρˡ) (punchOut {A} {head ρˡ} _)) ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩
+ v (ρˡ (punchIn (ρʳ (ρˡ zero)) x)) ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h x))) (inverseʳ ρ) ⟩
+ v (ρˡ (punchIn zero x)) ≡⟨⟩
+ v (ρˡ (suc x)) ≡⟨⟩
+ tail (v ∘ ρˡ) x ∎
+ preimage- : [preimageρʳS]- ≗ preimage ρʳ- S-
+ preimage- x = begin
+ [preimageρʳS]- x ≡⟨⟩
+ removeAt (preimage ρʳ S) (head ρˡ) x ≡⟨⟩
+ S (ρʳ (punchIn (head ρˡ) x)) ≡⟨ ≡.cong S (punchIn-permute ρ (head ρˡ) x) ⟩ 
+ S (punchIn (ρʳ (head ρˡ)) (ρʳ- x)) ≡⟨⟩
+ S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x)) ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩ 
+ S (punchIn zero (ρʳ- x)) ≡⟨⟩ 
+ S (suc (ρʳ- x)) ≡⟨⟩
+ preimage ρʳ- S- x ∎
+
+push-with : {A B : ℕ} → (e : Value) → Vector Value A → (Fin A → Fin B) → Vector Value B
+push-with e v f = merge-with e v ∘ preimage f ∘ ⁅_⁆
+
+push : {A B : ℕ} → Vector Value A → (Fin A → Fin B) → Vector Value B
+push = push-with U
+
+mutual
+ merge-preimage
+ : {A B : ℕ}
+ (f : Fin A → Fin B)
+ → (v : Vector Value A)
+ (S : Subset B)
+ → merge v (preimage f S) ≡ merge (push v f) S
+ merge-preimage {zero} {zero} f v S = merge-[]₂
+ merge-preimage {zero} {suc B} f v S = begin
+ merge v (preimage f S) ≡⟨ merge-[] v (preimage f S) ⟩
+ U ≡⟨ merge-with-U U S ⟨
+ merge (λ _ → U) S ≡⟨ merge-cong₁ (λ x → ≡.sym (merge-[] v (⁅ x ⁆ ∘ f))) S ⟩
+ merge (push v f) S ∎
+ merge-preimage {suc A} {zero} f v S with () ← f zero
+ merge-preimage {suc A} {suc B} f v S with insert-f0-0 f
+ ... | ρ , ρf0≡0 = begin
+ merge v (preimage f S) ≡⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨
+ merge v (preimage (ρˡ ∘ ρʳ ∘ f) S) ≡⟨⟩
+ merge v (preimage (ρʳ ∘ f) (preimage ρˡ S)) ≡⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) (preimage ρˡ S) ≡⟨ merge-preimage-ρ (flip ρ) (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) S ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆ ∘ ρʳ) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) S ⟩
+ merge (merge v ∘ preimage (ρʳ ∘ f) ∘ preimage ρˡ ∘ ⁅_⁆) S ≡⟨⟩
+ merge (merge v ∘ preimage (ρˡ ∘ ρʳ ∘ f) ∘ ⁅_⁆) S ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₁ (λ y → inverseˡ ρ {f y}) ∘ ⁅_⁆) S ⟩
+ merge (merge v ∘ preimage f ∘ ⁅_⁆) S ∎
+ where
+ ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B)
+ ρʳ = ρ ⟨$⟩ʳ_
+ ρˡ = ρ ⟨$⟩ˡ_
+
+ merge-preimage-f0≡0
+ : {A B : ℕ}
+ (f : Fin (ℕ.suc A) → Fin (ℕ.suc B))
+ → f Fin.zero ≡ Fin.zero
+ → (v : Vector Value (ℕ.suc A))
+ (S : Subset (ℕ.suc B))
+ → merge v (preimage f S) ≡ merge (merge v ∘ preimage f ∘ ⁅_⁆) S
+ merge-preimage-f0≡0 {A} {B} f f0≡0 v S
+ using S0 , S- ← head S , tail S
+ using v0 , v- ← head v , tail v
+ using _ , f- ← head f , tail f
+ = begin
+ merge v f⁻¹[S] ≡⟨ merge-suc v f⁻¹[S] ⟩
+ merge-with v0? v- f⁻¹[S]- ≡⟨ join-merge v0? v- f⁻¹[S]- ⟨
+ join v0? (merge v- f⁻¹[S]-) ≡⟨ ≡.cong (join v0?) (merge-preimage f- v- S) ⟩
+ join v0? (merge f[v-] S) ≡⟨ join-merge v0? f[v-] S ⟩
+ merge-with v0? f[v-] S ≡⟨ merge-with-suc v0? f[v-] S ⟩
+ merge-with v0?+[f[v-]0?] f[v-]- S- ≡⟨ ≡.cong (λ h → merge-with h f[v-]- S-) ≡f[v]0 ⟩
+ merge-with f[v]0? f[v-]- S- ≡⟨ merge-with-cong f[v]0? ≡f[v]- S- ⟩
+ merge-with f[v]0? f[v]- S- ≡⟨ merge-suc f[v] S ⟨
+ merge f[v] S ∎
+ where
+ f⁻¹[S] : Subset (suc A)
+ f⁻¹[S] = preimage f S
+ f⁻¹[S]- : Subset A
+ f⁻¹[S]- = tail f⁻¹[S]
+ f⁻¹[S]0 : Bool
+ f⁻¹[S]0 = head f⁻¹[S]
+ f[v] : Vector Value (suc B)
+ f[v] = push v f
+ f[v]- : Vector Value B
+ f[v]- = tail f[v]
+ f[v]0 : Value
+ f[v]0 = head f[v]
+ f[v-] : Vector Value (suc B)
+ f[v-] = push v- f-
+ f[v-]- : Vector Value B
+ f[v-]- = tail f[v-]
+ f[v-]0 : Value
+ f[v-]0 = head f[v-]
+ f⁻¹⁅0⁆ : Subset (suc A)
+ f⁻¹⁅0⁆ = preimage f ⁅ zero ⁆
+ f⁻¹⁅0⁆- : Subset A
+ f⁻¹⁅0⁆- = tail f⁻¹⁅0⁆
+ v0? v0?+[f[v-]0?] f[v]0? : Value
+ v0? = v0 when f⁻¹[S]0
+ v0?+[f[v-]0?] = (if S0 then join v0? f[v-]0 else v0?)
+ f[v]0? = f[v]0 when S0
+ ≡f[v]0 : v0?+[f[v-]0?] ≡ f[v]0?
+ ≡f[v]0 rewrite f0≡0 with S0
+ ... | true = begin
+ join v0 (merge v- f⁻¹⁅0⁆-) ≡⟨ join-merge v0 v- (tail (preimage f ⁅ zero ⁆)) ⟩
+ merge-with v0 v- f⁻¹⁅0⁆- ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ zero ⁆ h) v- f⁻¹⁅0⁆-) f0≡0 ⟨
+ merge-with v0?′ v- f⁻¹⁅0⁆- ≡⟨ merge-suc v (preimage f ⁅ zero ⁆) ⟨
+ merge v f⁻¹⁅0⁆  ∎
+ where
+ v0?′ : Value
+ v0?′ = v0 when head f⁻¹⁅0⁆
+ ... | false = ≡.refl
+ ≡f[v]- : f[v-]- ≗ f[v]-
+ ≡f[v]- x = begin
+ push v- f- (suc x) ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ suc x ⁆ h) v- (preimage f- ⁅ suc x ⁆)) f0≡0 ⟨
+ push-with v0?′ v- f- (suc x) ≡⟨ merge-suc v (preimage f ⁅ suc x ⁆) ⟨
+ push v f (suc x) ∎
+ where
+ v0?′ : Value
+ v0?′ = v0 when head (preimage f ⁅ suc x ⁆)
+
+merge-++
+ : {n m : ℕ}
+ (xs : Vector Value n)
+ (ys : Vector Value m)
+ (S₁ : Subset n)
+ (S₂ : Subset m)
+ → merge (xs ++ ys) (S₁ ++ S₂)
+ ≡ join (merge xs S₁) (merge ys S₂)
+merge-++ {zero} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-cong₂ (xs ++ ys) (λ _ → ≡.refl) ⟩
+ merge (xs ++ ys) S₂ ≡⟨ merge-cong₁ (λ _ → ≡.refl) S₂ ⟩
+ merge ys S₂ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-[] xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+merge-++ {suc n} {m} xs ys S₁ S₂ = begin
+ merge (xs ++ ys) (S₁ ++ S₂) ≡⟨ merge-suc (xs ++ ys) (S₁ ++ S₂) ⟩
+ merge-with (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ≡⟨ join-merge (head xs when head S₁) (tail (xs ++ ys)) (tail (S₁ ++ S₂)) ⟨
+ join (head xs when head S₁) (merge (tail (xs ++ ys)) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₁ ([,]-map ∘ splitAt n) (tail (S₁ ++ S₂))) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail (S₁ ++ S₂)))
+ ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-cong₂ (tail xs ++ ys) ([,]-map ∘ splitAt n)) ⟩
+ join (head xs when head S₁) (merge (tail xs ++ ys) (tail S₁ ++ S₂)) ≡⟨ ≡.cong (join (head xs when head S₁)) (merge-++ (tail xs) ys (tail S₁) S₂) ⟩
+ join (head xs when head S₁) (join (merge (tail xs) (tail S₁)) (merge ys S₂)) ≡⟨ join-assoc (head xs when head S₁) (merge (tail xs) (tail S₁)) _ ⟨
+ join (join (head xs when head S₁) (merge (tail xs) (tail S₁))) (merge ys S₂)
+ ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (join-merge (head xs when head S₁) (tail xs) (tail S₁)) ⟩
+ join (merge-with (head xs when head S₁) (tail xs) (tail S₁)) (merge ys S₂) ≡⟨ ≡.cong (λ h → join h (merge ys S₂)) (merge-suc xs S₁) ⟨
+ join (merge xs S₁) (merge ys S₂) ∎
+
+open import Function using (Equivalence)
+open Equivalence
+open import Data.Nat using (_+_)
+open import Data.Fin using (_↑ˡ_; _↑ʳ_; _≟_)
+open import Data.Fin.Properties using (↑ˡ-injective; ↑ʳ-injective; splitAt⁻¹-↑ˡ; splitAt-↑ˡ; splitAt⁻¹-↑ʳ; splitAt-↑ʳ)
+open import Relation.Nullary.Decidable using (does; does-⇔; dec-false)
+
+open Fin
+⁅⁆-≟ : {n : ℕ} (x y : Fin n) → ⁅ x ⁆ y ≡ does (x ≟ y)
+⁅⁆-≟ zero zero = ≡.refl
+⁅⁆-≟ zero (suc y) = ≡.refl
+⁅⁆-≟ (suc x) zero = ≡.refl
+⁅⁆-≟ (suc x) (suc y) = ⁅⁆-≟ x y
+
+open import Data.Sum using ([_,_]′; inj₁; inj₂)
+⁅⁆-++
+ : {n′ m′ : ℕ}
+ (i : Fin (n′ + m′))
+ → [ (λ x → ⁅ x ⁆ ++ ⊥) , (λ x → ⊥ ++ ⁅ x ⁆) ]′ (splitAt n′ i) ≗ ⁅ i ⁆
+⁅⁆-++ {n′} {m′} i x with splitAt n′ i in eq₁
+... | inj₁ i′ with splitAt n′ x in eq₂
+... | inj₁ x′ = begin
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ⟩
+ does (i′ ↑ˡ m′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (x′ ↑ˡ m′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (i′ ↑ˡ m′ ≡ x′ ↑ˡ m′))
+ ⇔ .to = ≡.cong (_↑ˡ m′)
+ ⇔ .from = ↑ˡ-injective m′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl
+... | inj₂ x′ = begin
+ false ≡⟨ dec-false (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ↑ˡ≢↑ʳ ⟨
+ does (i′ ↑ˡ m′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (i′ ↑ˡ m′) (n′ ↑ʳ x′) ⟨
+ ⁅ i′ ↑ˡ m′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ˡ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ˡ≢↑ʳ : i′ ↑ˡ m′ ≢ n′ ↑ʳ x′
+ ↑ˡ≢↑ʳ ≡ = case ≡.trans (≡.sym (splitAt-↑ˡ n′ i′ m′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ʳ n′ m′ x′)) of λ { () }
+⁅⁆-++ {n′} i x | inj₂ i′ with splitAt n′ x in eq₂
+⁅⁆-++ {n′} {m′} i x | inj₂ i′ | inj₁ x′ = begin
+ [ ⊥ , ⁅ i′ ⁆ ]′ (splitAt n′ x) ≡⟨ ≡.cong ([ ⊥ , ⁅ i′ ⁆ ]′) eq₂ ⟩
+ false ≡⟨ dec-false (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ↑ʳ≢↑ˡ ⟨
+ does (n′ ↑ʳ i′ ≟ x′ ↑ˡ m′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (x′ ↑ˡ m′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (x′ ↑ˡ m′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ˡ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ↑ʳ≢↑ˡ : n′ ↑ʳ i′ ≢ x′ ↑ˡ m′
+ ↑ʳ≢↑ˡ ≡ = case ≡.trans (≡.sym (splitAt-↑ʳ n′ m′ i′)) (≡.trans (≡.cong (splitAt n′) ≡) (splitAt-↑ˡ n′ x′ m′)) of λ { () }
+⁅⁆-++ {n′} i x | inj₂ i′ | inj₂ x′ = begin
+ [ ⊥ , ⁅ i′ ⁆ ]′ (splitAt n′ x) ≡⟨ ≡.cong [ ⊥ , ⁅ i′ ⁆ ]′ eq₂ ⟩
+ ⁅ i′ ⁆ x′ ≡⟨ ⁅⁆-≟ i′ x′ ⟩
+ does (i′ ≟ x′) ≡⟨ does-⇔ ⇔ (i′ ≟ x′) (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ⟩
+ does (n′ ↑ʳ i′ ≟ n′ ↑ʳ x′) ≡⟨ ⁅⁆-≟ (n′ ↑ʳ i′) (n′ ↑ʳ x′) ⟨
+ ⁅ n′ ↑ʳ i′ ⁆ (n′ ↑ʳ x′) ≡⟨ ≡.cong₂ ⁅_⁆ (splitAt⁻¹-↑ʳ eq₁) (splitAt⁻¹-↑ʳ eq₂) ⟩
+ ⁅ i ⁆ x ∎
+ where
+ ⇔ : Equivalence (≡.setoid (i′ ≡ x′)) (≡.setoid (n′ ↑ʳ i′ ≡ n′ ↑ʳ x′))
+ ⇔ .to = ≡.cong (n′ ↑ʳ_)
+ ⇔ .from = ↑ʳ-injective n′ i′ x′
+ ⇔ .to-cong ≡.refl = ≡.refl
+ ⇔ .from-cong ≡.refl = ≡.refl