aboutsummaryrefslogtreecommitdiff
path: root/Data/Hypergraph.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Data/Hypergraph.agda')
-rw-r--r--Data/Hypergraph.agda86
1 files changed, 86 insertions, 0 deletions
diff --git a/Data/Hypergraph.agda b/Data/Hypergraph.agda
new file mode 100644
index 0000000..532e082
--- /dev/null
+++ b/Data/Hypergraph.agda
@@ -0,0 +1,86 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Data.Hypergraph.Label using (HypergraphLabel)
+open import Level using (Level; 0ℓ)
+
+module Data.Hypergraph {ℓ : Level} (HL : HypergraphLabel) where
+
+import Data.List.Relation.Binary.Pointwise as PW
+import Function.Reasoning as →-Reasoning
+import Relation.Binary.PropositionalEquality as ≡
+import Data.Hypergraph.Edge {ℓ} HL as Hyperedge
+import Data.List.Relation.Binary.Permutation.Propositional as List-↭
+import Data.List.Relation.Binary.Permutation.Setoid as ↭
+
+open HypergraphLabel HL using (Label) public
+
+open import Data.List using (List; map)
+open import Data.Nat using (ℕ)
+open import Data.String using (String; unlines)
+open import Function using (_∘_; _⟶ₛ_; Func)
+open import Relation.Binary using (Setoid)
+
+module Edge = Hyperedge
+open Edge using (Edge; Edgeₛ)
+
+-- A hypergraph is a list of edges
+record Hypergraph (v : ℕ) : Set ℓ where
+ constructor mkHypergraph
+ field
+ edges : List (Edge v)
+
+module _ {v : ℕ} where
+
+ open ↭ (Edgeₛ v) using (_↭_; ↭-refl; ↭-sym; ↭-trans)
+
+ show : Hypergraph v → String
+ show (mkHypergraph e) = unlines (map Edge.show e)
+
+ -- an equivalence relation on hypergraphs
+ record _≈_ (H H′ : Hypergraph v) : Set ℓ where
+
+ constructor mk≈
+
+ module H = Hypergraph H
+ module H′ = Hypergraph H′
+
+ field
+ ↭-edges : H.edges ↭ H′.edges
+
+ infixr 4 _≈_
+
+ ≈-refl : {H : Hypergraph v} → H ≈ H
+ ≈-refl = mk≈ ↭-refl
+
+ ≈-sym : {H H′ : Hypergraph v} → H ≈ H′ → H′ ≈ H
+ ≈-sym (mk≈ ≡n) = mk≈ (↭-sym ≡n)
+
+ ≈-trans : {H H′ H″ : Hypergraph v} → H ≈ H′ → H′ ≈ H″ → H ≈ H″
+ ≈-trans (mk≈ ≡n₁) (mk≈ ≡n₂) = mk≈ (↭-trans ≡n₁ ≡n₂)
+
+-- The setoid of labeled hypergraphs with v nodes
+Hypergraphₛ : ℕ → Setoid ℓ ℓ
+Hypergraphₛ v = record
+ { Carrier = Hypergraph v
+ ; _≈_ = _≈_
+ ; isEquivalence = record
+ { refl = ≈-refl
+ ; sym = ≈-sym
+ ; trans = ≈-trans
+ }
+ }
+
+open Func
+
+open ↭ using (↭-setoid)
+
+Multiset∘Edgeₛ : (n : ℕ) → Setoid ℓ ℓ
+Multiset∘Edgeₛ = ↭-setoid ∘ Edgeₛ
+
+mkHypergraphₛ : {n : ℕ} → Multiset∘Edgeₛ n ⟶ₛ Hypergraphₛ n
+mkHypergraphₛ .to = mkHypergraph
+mkHypergraphₛ .cong = mk≈
+
+edgesₛ : {n : ℕ} → Hypergraphₛ n ⟶ₛ Multiset∘Edgeₛ n
+edgesₛ .to = Hypergraph.edges
+edgesₛ .cong = _≈_.↭-edges