diff options
Diffstat (limited to 'Data/Hypergraph/Edge.agda')
| -rw-r--r-- | Data/Hypergraph/Edge.agda | 335 | 
1 files changed, 335 insertions, 0 deletions
| diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda new file mode 100644 index 0000000..13b9278 --- /dev/null +++ b/Data/Hypergraph/Edge.agda @@ -0,0 +1,335 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) + +module Data.Hypergraph.Edge (HL : HypergraphLabel) where + + +open import Relation.Binary using (Rel; IsStrictTotalOrder; Tri; Trichotomous; _Respects_) +open import Data.Castable using (IsCastable) +open import Data.Fin using (Fin) +open import Data.Fin.Show using () renaming (show to showFin) +open import Data.Nat.Base using (ℕ; _<_) +open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp) +open import Data.Product.Base using (_,_; proj₁; proj₂) +open import Data.String using (String; _<+>_) +open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡) +open import Data.Vec.Show using () renaming (show to showVec) +open import Level using (0ℓ) +open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder) +open import Relation.Binary.Structures using (IsEquivalence) +open import Relation.Nullary using (¬_) + +import Data.Fin.Base as Fin +import Data.Fin.Properties as FinProp +import Data.Vec.Base as VecBase +import Data.Vec.Relation.Binary.Equality.Cast as VecCast +import Data.Vec.Relation.Binary.Lex.Strict as Lex +import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.Properties.DecTotalOrder as DTOP +import Relation.Binary.Properties.StrictTotalOrder as STOP + +module HL = HypergraphLabel HL +open HL using (Label; cast; cast-is-id) +open VecBase using (Vec) + +record Edge (v : ℕ) : Set where +  field +    {arity} : ℕ +    label : Label arity +    ports : Vec (Fin v) arity + +open ≡ using (_≡_) +open VecCast using (_≈[_]_) + +record ≈-Edge {n : ℕ} (E E′ : Edge n) : Set where +  module E = Edge E +  module E′ = Edge E′ +  field +    ≡arity : E.arity ≡ E′.arity +    ≡label : cast ≡arity E.label ≡ E′.label +    ≡ports : E.ports ≈[ ≡arity ] E′.ports + +≈-Edge-refl : {v : ℕ} {x : Edge v} → ≈-Edge x x +≈-Edge-refl {_} {x} = record +    { ≡arity = ≡.refl +    ; ≡label = HL.≈-reflexive ≡.refl +    ; ≡ports = VecCast.≈-reflexive ≡.refl +    } +  where +    open Edge x using (arity; label) +    open DecTotalOrder (HL.decTotalOrder arity) using (module Eq) + +≈-Edge-sym : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ≈-Edge y x +≈-Edge-sym {_} {x} {y} x≈y = record +    { ≡arity = ≡.sym ≡arity +    ; ≡label = HL.≈-sym ≡label +    ; ≡ports = VecCast.≈-sym ≡ports +    } +  where +    open ≈-Edge x≈y +    open DecTotalOrder (HL.decTotalOrder E.arity) using (module Eq) + +≈-Edge-trans : {v : ℕ} {i j k : Edge v} → ≈-Edge i j → ≈-Edge j k → ≈-Edge i k +≈-Edge-trans {_} {i} {j} {k} i≈j j≈k = record +    { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity +    ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label +    ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports +    } +  where +    module i≈j = ≈-Edge i≈j +    module j≈k = ≈-Edge j≈k + +open import Relation.Binary using (IsEquivalence) +≈-Edge-IsEquivalence : {v : ℕ} → IsEquivalence (≈-Edge {v}) +≈-Edge-IsEquivalence = record +    { refl = ≈-Edge-refl +    ; sym = ≈-Edge-sym +    ; trans = ≈-Edge-trans +    } + +open HL using (_[_<_]) +_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ +_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v}) +data <-Edge {v : ℕ} : Edge v → Edge v → Set where +  <-arity +      : {x y : Edge v} +      → Edge.arity x < Edge.arity y +      → <-Edge x y +  <-label +      : {x y : Edge v} +        (≡a : Edge.arity x ≡ Edge.arity y) +      → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ] +      → <-Edge x y +  <-ports +      : {x y : Edge v} +        (≡a : Edge.arity x ≡ Edge.arity y) +        (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y) +      → VecBase.cast ≡a (Edge.ports x) << Edge.ports y +      → <-Edge x y + +<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y +<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m +<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l +<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y) +    = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y + +<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k +<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k) +<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j +<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j +<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k +<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k) +    = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k)) +  where +    open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans) +<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _) +    = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j) +  where +    open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈) +<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k +<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k) +    = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k) +  where +    open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈) +<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k) +  rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j)) +    = <-ports ≡.refl +        (HL.≈-trans ≡l₁ ≡l₂) +        (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k) +  where +    open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge +<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y) +  where +    open ≈-Edge ≈x using (≡arity) +<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y) +    = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y) +  where +    module y = Edge y +    open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈) +<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y) +    = <-ports +        ≡.refl +        (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) +        (Lex.<-respectsˡ +            ≡-isPartialEquivalence +            FinProp.<-respˡ-≡ +            (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) +            x₁<y) +  where +    open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge +<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁) +<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁) +    = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁) +  where +    module x = Edge x +    open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈) +<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁) +    = <-ports +        ≡.refl +        (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl))) +        (Lex.<-respectsʳ +            ≡-isPartialEquivalence +            FinProp.<-respʳ-≡ +            (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) +            x<y₁) +  where +    open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +open Tri +open ≈-Edge +tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v}) +tri x y with <-cmp x.arity y.arity +  where +    module x = Edge x +    module y = Edge y +tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x +  where +    ¬y<x :  ¬ <-Edge y x +    ¬y<x (<-arity y<x) = y≮x y<x +    ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a) +    ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a) +tri x y | tri≈ x≮y ≡.refl y≮x = compare-label +  where +    module x = Edge x +    module y = Edge y +    open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare) +    import Relation.Binary.Properties.DecTotalOrder +    open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈) +    compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) +    compare-label with compare x.label y.label +    ... | tri< x<y x≢y y≮x′ = tri< +            (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y)) +            (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) +            ¬y<x +      where +        ¬y<x :  ¬ <-Edge y x +        ¬y<x (<-arity y<x) = y≮x y<x +        ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) +        ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label)) +    ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports +      where +        compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) +        compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports +        ... | tri< x<y x≢y y≮x″ = +                tri< +                  (<-ports ≡.refl +                    (HL.≈-reflexive x≡y′) +                    (Lex.<-respectsˡ +                      ≡-isPartialEquivalence +                      FinProp.<-respˡ-≡ +                      (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) +                      x<y)) +                  (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) +                  ¬y<x +          where +            open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) +            ¬y<x :  ¬ <-Edge y x +            ¬y<x (<-arity y<x) = y≮x y<x +            ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) +            ¬y<x (<-ports _ _ y<x) = +                y≮x″ +                  (Lex.<-respectsˡ +                    ≡-isPartialEquivalence +                    FinProp.<-respˡ-≡ +                    (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) +                    y<x) +        ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈ +                ¬x<y +                (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) }) +                ¬y<x +          where +            open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) +            ¬x<y : ¬ <-Edge x y +            ¬x<y (<-arity x<y) = x≮y x<y +            ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) +            ¬x<y (<-ports _ _ x<y) = +                x≮y″ +                  (Lex.<-respectsˡ +                    ≡-isPartialEquivalence +                    FinProp.<-respˡ-≡ +                    (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) +                    x<y) +            ¬y<x : ¬ <-Edge y x +            ¬y<x (<-arity y<x) = y≮x y<x +            ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) +            ¬y<x (<-ports _ _ y<x) = +                y≮x″ +                  (Lex.<-respectsˡ +                    ≡-isPartialEquivalence +                    FinProp.<-respˡ-≡ +                    (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) +                    y<x) + +        ... | tri> x≮y″ x≢y y<x = +                tri> +                  ¬x<y +                  (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) +                  (<-ports +                    ≡.refl +                    (HL.≈-sym (HL.≈-reflexive x≡y′)) +                    (Lex.<-respectsˡ +                      ≡-isPartialEquivalence +                      FinProp.<-respˡ-≡ +                      (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) +                      y<x)) +          where +            open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) +            ¬x<y : ¬ <-Edge x y +            ¬x<y (<-arity x<y) = x≮y x<y +            ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) +            ¬x<y (<-ports _ _ x<y) = +                x≮y″ +                  (Lex.<-respectsˡ +                    ≡-isPartialEquivalence +                    FinProp.<-respˡ-≡ +                    (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) +                    x<y) +    ... | tri> x≮y′ x≢y y<x = tri> +            ¬x<y +            (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) +            (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x)) +      where +        ¬x<y : ¬ <-Edge x y +        ¬x<y (<-arity x<y) = x≮y x<y +        ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) +        ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l) +tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x) +  where +    ¬x<y :  ¬ <-Edge x y +    ¬x<y (<-arity x<y) = x≮y x<y +    ¬x<y (<-label ≡a x<y) = x≢y ≡a +    ¬x<y (<-ports ≡a _ _) = x≢y ≡a + +isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v}) +isStrictTotalOrder = record +    { isStrictPartialOrder = record +        { isEquivalence = ≈-Edge-IsEquivalence +        ; irrefl = <-Edge-irrefl +        ; trans = <-Edge-trans +        ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈ +        } +    ; compare = tri +    } + +strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ +strictTotalOrder {v} = record +    { Carrier = Edge v +    ; _≈_ = ≈-Edge {v} +    ; _<_ = <-Edge {v} +    ; isStrictTotalOrder = isStrictTotalOrder {v} +    } + +showEdge : {v : ℕ} → Edge v → String +showEdge record { arity = a ; label = l ; ports = p} = HL.showLabel a l <+> showVec showFin p + +open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public + +≈-Edge⇒≡ : {v : ℕ} {x y : Edge v} → ≈-Edge x y → x ≡ y +≈-Edge⇒≡ {v} {record { label = l ; ports = p }} record { ≡arity = ≡.refl ; ≡label = ≡.refl ; ≡ports = ≡.refl } +  rewrite cast-is-id ≡.refl l +  rewrite VecCast.cast-is-id ≡.refl p = ≡.refl | 
