aboutsummaryrefslogtreecommitdiff
path: root/Data/Opaque
diff options
context:
space:
mode:
Diffstat (limited to 'Data/Opaque')
-rw-r--r--Data/Opaque/Multiset.agda67
1 files changed, 67 insertions, 0 deletions
diff --git a/Data/Opaque/Multiset.agda b/Data/Opaque/Multiset.agda
new file mode 100644
index 0000000..2ba0a0e
--- /dev/null
+++ b/Data/Opaque/Multiset.agda
@@ -0,0 +1,67 @@
+{-# OPTIONS --without-K --safe #-}
+{-# OPTIONS --hidden-argument-puns #-}
+
+module Data.Opaque.Multiset where
+
+import Data.List as L
+
+open import Data.List.Relation.Binary.Permutation.Setoid as ↭ using (↭-setoid; prep)
+open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺; ++⁺; ++-comm)
+open import Data.Product using (_,_)
+open import Data.Product using (uncurry′)
+open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
+open import Data.Setoid.Unit using (⊤ₛ)
+open import Function using (_⟶ₛ_; Func; _⟨$⟩_)
+open import Function.Construct.Constant using () renaming (function to Const)
+open import Level using (Level; _⊔_)
+open import Relation.Binary using (Setoid)
+
+open Func
+
+private
+
+ variable
+ a c ℓ : Level
+ A B : Set a
+ Aₛ Bₛ : Setoid c ℓ
+
+opaque
+
+ Multiset : Set a → Set a
+ Multiset = L.List
+
+ [] : Multiset A
+ [] = L.[]
+
+ _∷_ : A → Multiset A → Multiset A
+ _∷_ = L._∷_
+
+ map : (A → B) → Multiset A → Multiset B
+ map = L.map
+
+ _++_ : Multiset A → Multiset A → Multiset A
+ _++_ = L._++_
+
+ Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+ Multisetₛ = ↭-setoid
+
+ []ₛ : ⊤ₛ {c} {c ⊔ ℓ} ⟶ₛ Multisetₛ {c} {ℓ} Aₛ
+ []ₛ {Aₛ} = Const ⊤ₛ (Multisetₛ Aₛ) []
+
+ ∷ₛ : Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
+ ∷ₛ .to = uncurry′ _∷_
+ ∷ₛ .cong = uncurry′ prep
+
+ mapₛ : (Aₛ ⟶ₛ Bₛ) → Multisetₛ Aₛ ⟶ₛ Multisetₛ Bₛ
+ mapₛ f .to = map (to f)
+ mapₛ {Aₛ} {Bₛ} f .cong xs≈ys = map⁺ Aₛ Bₛ (cong f) xs≈ys
+
+ ++ₛ : Multisetₛ Aₛ ×ₛ Multisetₛ Aₛ ⟶ₛ Multisetₛ Aₛ
+ ++ₛ .to = uncurry′ _++_
+ ++ₛ {Aₛ} .cong = uncurry′ (++⁺ Aₛ)
+
+ ++ₛ-comm
+ : (open Setoid (Multisetₛ Aₛ))
+ → (xs ys : Carrier)
+ → ++ₛ ⟨$⟩ (xs , ys) ≈ ++ₛ ⟨$⟩ (ys , xs)
+ ++ₛ-comm {Aₛ} xs ys = ++-comm Aₛ xs ys