diff options
Diffstat (limited to 'Data/Subset')
| -rw-r--r-- | Data/Subset/Functional.agda | 162 | 
1 files changed, 162 insertions, 0 deletions
| diff --git a/Data/Subset/Functional.agda b/Data/Subset/Functional.agda new file mode 100644 index 0000000..33a6d8e --- /dev/null +++ b/Data/Subset/Functional.agda @@ -0,0 +1,162 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Subset.Functional where + +open import Data.Bool.Base using (Bool; _∨_; _∧_; if_then_else_) +open import Data.Bool.Properties using (if-float) +open import Data.Fin.Base using (Fin) +open import Data.Fin.Permutation using (Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_; inverseˡ; inverseʳ) +open import Data.Fin.Properties using (suc-injective; 0≢1+n) +open import Data.Nat.Base using (ℕ) +open import Function.Base using (∣_⟩-_; _∘_) +open import Function.Definitions using (Injective) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; _≢_) +open import Data.Vector as V using (Vector; head; tail) + +open Bool +open Fin +open ℕ + +Subset : ℕ → Set +Subset = Vector Bool + +private +  variable n A : ℕ +  variable B C : Set + +⊥ : Subset n +⊥ _ = false + +_∪_ : Subset n → Subset n → Subset n +(A ∪ B) k = A k ∨ B k + +_∩_ : Subset n → Subset n → Subset n +(A ∩ B) k = A k ∧ B k + +⁅_⁆ : Fin n → Subset n +⁅_⁆ zero zero = true +⁅_⁆ zero (suc _) = false +⁅_⁆ (suc k) zero = false +⁅_⁆ (suc k) (suc i) = ⁅ k ⁆ i + +⁅⁆-refl : (k : Fin n) → ⁅ k ⁆ k ≡ true +⁅⁆-refl zero = ≡.refl +⁅⁆-refl (suc k) = ⁅⁆-refl k + +⁅x⁆y≡true +    : (x y : Fin n) +    → .(⁅ x ⁆ y ≡ true) +    → x ≡ y +⁅x⁆y≡true zero zero prf = ≡.refl +⁅x⁆y≡true (suc x) (suc y) prf = ≡.cong suc (⁅x⁆y≡true x y prf) + +⁅x⁆y≡false +    : (x y : Fin n) +    → .(⁅ x ⁆ y ≡ false) +    → x ≢ y +⁅x⁆y≡false zero (suc y) prf = 0≢1+n +⁅x⁆y≡false (suc x) zero prf = 0≢1+n ∘ ≡.sym +⁅x⁆y≡false (suc x) (suc y) prf = ⁅x⁆y≡false x y prf ∘ suc-injective + +f-⁅⁆ +    : {n m : ℕ} +      (f : Fin n → Fin m) +    → Injective _≡_ _≡_ f +    → (x y : Fin n) +    → ⁅ x ⁆ y ≡ ⁅ f x ⁆ (f y) +f-⁅⁆ f f-inj zero zero = ≡.sym (⁅⁆-refl (f zero)) +f-⁅⁆ f f-inj zero (suc y) with ⁅ f zero ⁆ (f (suc y)) in eq +... | true with () ← f-inj (⁅x⁆y≡true (f zero) (f (suc y)) eq) +... | false = ≡.refl +f-⁅⁆ f f-inj (suc x) zero with ⁅ f (suc x) ⁆ (f zero) in eq +... | true with () ← f-inj (⁅x⁆y≡true (f (suc x)) (f zero) eq) +... | false = ≡.refl +f-⁅⁆ f f-inj (suc x) (suc y) = f-⁅⁆ (f ∘ suc) (suc-injective ∘ f-inj) x y + +⁅⁆∘ρ +    : (ρ : Permutation′ (suc n)) +      (x : Fin (suc n)) +    → ⁅ ρ ⟨$⟩ʳ x ⁆ ≗ ⁅ x ⁆ ∘ (ρ ⟨$⟩ˡ_) +⁅⁆∘ρ {n} ρ x y = begin +    ⁅ ρ ⟨$⟩ʳ x ⁆ y                    ≡⟨ f-⁅⁆ (ρ ⟨$⟩ˡ_) ρˡ-inj (ρ ⟨$⟩ʳ x) y ⟩ +    ⁅ ρ ⟨$⟩ˡ (ρ ⟨$⟩ʳ x) ⁆ (ρ ⟨$⟩ˡ y)  ≡⟨ ≡.cong (λ h → ⁅ h ⁆ (ρ ⟨$⟩ˡ y)) (inverseˡ ρ) ⟩ +    ⁅ x ⁆ (ρ ⟨$⟩ˡ y)                  ∎ +  where +    open ≡.≡-Reasoning +    ρˡ-inj : {x y : Fin (suc n)} → ρ ⟨$⟩ˡ x ≡ ρ ⟨$⟩ˡ y → x ≡ y +    ρˡ-inj {x} {y} ρˡx≡ρˡy = begin +        x                 ≡⟨ inverseʳ ρ ⟨ +        ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ x) ≡⟨ ≡.cong (ρ ⟨$⟩ʳ_) ρˡx≡ρˡy ⟩ +        ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ y) ≡⟨ inverseʳ ρ ⟩ +        y                 ∎ + +opaque +  -- TODO dependent fold +  foldl : (B → Fin A → B) → B → Subset A → B +  foldl {B = B} f = V.foldl (λ _ → B) (λ { {k} acc b → if b then f acc k else acc }) + +  foldl-cong₁ +      : {f g : B → Fin A → B} +      → (∀ x y → f x y ≡ g x y) +      → (e : B) +      → (S : Subset A) +      → foldl f e S ≡ foldl g e S +  foldl-cong₁ {B = B} f≗g e S = V.foldl-cong (λ _ → B) (λ { {k} x y → ≡.cong (if y then_else x) (f≗g x k) }) e S + +  foldl-cong₂ +      : (f : B → Fin A → B) +        (e : B) +        {S₁ S₂ : Subset A} +      → (S₁ ≗ S₂) +      → foldl f e S₁ ≡ foldl f e S₂ +  foldl-cong₂ {B = B} f e S₁≗S₂ = V.foldl-cong-arg (λ _ → B) (λ {n} acc b → if b then f acc n else acc) e S₁≗S₂ + +  foldl-suc +      : (f : B → Fin (suc A) → B) +      → (e : B) +      → (S : Subset (suc A)) +      → foldl f e S ≡ foldl (∣ f ⟩- suc) (if head S then f e zero else e) (tail S) +  foldl-suc f e S = ≡.refl + +  foldl-⊥ +      : {A : ℕ} +        {B : Set} +        (f : B → Fin A → B) +        (e : B) +      → foldl f e ⊥ ≡ e +  foldl-⊥ {zero} _ _ = ≡.refl +  foldl-⊥ {suc A} f e = foldl-⊥ (∣ f ⟩- suc) e + +  foldl-⁅⁆ +      : (f : B → Fin A → B) +        (e : B) +        (k : Fin A) +      → foldl f e ⁅ k ⁆ ≡ f e k +  foldl-⁅⁆ f e zero = foldl-⊥ f (f e zero) +  foldl-⁅⁆ f e (suc k) = foldl-⁅⁆ (∣ f ⟩- suc) e k + +  foldl-fusion +      : (h : C → B) +        {f : C → Fin A → C} +        {g : B → Fin A → B} +      → (∀ x n → h (f x n) ≡ g (h x) n) +      → (e : C) +      → h ∘ foldl f e ≗ foldl g (h e) +  foldl-fusion {C = C} {A = A} h {f} {g} fuse e = V.foldl-fusion h ≡.refl fuse′ +    where +      open ≡.≡-Reasoning +      fuse′ +          : {k : Fin A} +            (acc : C) +            (b : Bool) +          → h (if b then f acc k else acc) ≡ (if b then g (h acc) k else h acc) +      fuse′ {k} acc b = begin +          h (if b then f acc k else acc)      ≡⟨ if-float h b ⟩ +          (if b then h (f acc k) else h acc)  ≡⟨ ≡.cong (if b then_else h acc) (fuse acc k) ⟩ +          (if b then g (h acc) k else h acc)  ∎ + +Subset0≗⊥ : (S : Subset 0) → S ≗ ⊥ +Subset0≗⊥ S () + +foldl-[] : (f : B → Fin 0 → B) (e : B) (S : Subset 0) → foldl f e S ≡ e +foldl-[] f e S = ≡.trans (foldl-cong₂ f e (Subset0≗⊥ S)) (foldl-⊥ f e) | 
