diff options
Diffstat (limited to 'Data/System/Values.agda')
| -rw-r--r-- | Data/System/Values.agda | 517 |
1 files changed, 0 insertions, 517 deletions
diff --git a/Data/System/Values.agda b/Data/System/Values.agda deleted file mode 100644 index d1cd6c9..0000000 --- a/Data/System/Values.agda +++ /dev/null @@ -1,517 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Algebra.Bundles using (CommutativeMonoid) -open import Level using (0ℓ) - -module Data.System.Values (A : CommutativeMonoid 0ℓ 0ℓ) where - -open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) - -import Algebra.Properties.CommutativeMonoid.Sum A as Sum -import Data.Vec.Functional.Relation.Binary.Equality.Setoid as Pointwise -import Object.Monoid.Commutative Setoids-×.symmetric as Obj -import Relation.Binary.Reasoning.Setoid as ≈-Reasoning - -open import Data.Bool using (Bool; if_then_else_) -open import Data.Bool.Properties using (if-cong) -open import Data.Monoid using (module FromMonoid) -open import Data.CMonoid using (fromCMonoid) -open import Data.Fin using (Fin; splitAt; _↑ˡ_; _↑ʳ_; punchIn; punchOut) -open import Data.Fin using (_≟_) -open import Data.Fin.Permutation using (Permutation; Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_; id; flip; inverseˡ; inverseʳ; punchIn-permute; insert; remove) -open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂) -open import Data.Fin.Properties using (punchIn-punchOut) -open import Data.Nat using (ℕ; _+_) -open import Data.Product using (_,_; Σ-syntax) -open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) -open import Data.Setoid using (∣_∣) -open import Data.Subset.Functional using (Subset; ⁅_⁆; ⁅⁆∘ρ) -open import Data.Sum using (inj₁; inj₂) -open import Data.Vec.Functional as Vec using (Vector; zipWith; replicate) -open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_) -open import Level using (0ℓ) -open import Relation.Binary using (Rel; Setoid; IsEquivalence) -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) -open import Relation.Nullary.Decidable using (yes; no) - -open Bool -open CommutativeMonoid A renaming (Carrier to Value; setoid to Valueₛ) -open Fin -open Func -open Pointwise Valueₛ using (≋-setoid; ≋-isEquivalence) -open ℕ - -opaque - Values : ℕ → Setoid 0ℓ 0ℓ - Values = ≋-setoid - -_when_ : Value → Bool → Value -x when b = if b then x else ε - --- when preserves setoid equivalence -when-cong - : {x y : Value} - → x ≈ y - → (b : Bool) - → x when b ≈ y when b -when-cong _ false = refl -when-cong x≈y true = x≈y - -module _ {n : ℕ} where - - opaque - - unfolding Values - - _⊕_ : ∣ Values n ∣ → ∣ Values n ∣ → ∣ Values n ∣ - xs ⊕ ys = zipWith _∙_ xs ys - - <ε> : ∣ Values n ∣ - <ε> = replicate n ε - - mask : Subset n → ∣ Values n ∣ → ∣ Values n ∣ - mask S v i = v i when S i - - sum : ∣ Values n ∣ → Value - sum = Sum.sum - - merge : ∣ Values n ∣ → Subset n → Value - merge v S = sum (mask S v) - - -- mask preserves setoid equivalence - maskₛ : Subset n → Values n ⟶ₛ Values n - maskₛ S .to = mask S - maskₛ S .cong v≋w i = when-cong (v≋w i) (S i) - - -- sum preserves setoid equivalence - sumₛ : Values n ⟶ₛ Valueₛ - sumₛ .to = Sum.sum - sumₛ .cong = Sum.sum-cong-≋ - - head : ∣ Values (suc n) ∣ → Value - head xs = xs zero - - tail : ∣ Values (suc n) ∣ → ∣ Values n ∣ - tail xs = xs ∘ suc - - lookup : ∣ Values n ∣ → Fin n → Value - lookup v i = v i - - module ≋ = Setoid (Values n) - - _≋_ : Rel ∣ Values n ∣ 0ℓ - _≋_ = ≋._≈_ - - infix 4 _≋_ - - opaque - - unfolding merge - - -- merge preserves setoid equivalence - merge-cong - : (S : Subset n) - → {xs ys : ∣ Values n ∣} - → xs ≋ ys - → merge xs S ≈ merge ys S - merge-cong S {xs} {ys} xs≋ys = cong sumₛ (cong (maskₛ S) xs≋ys) - - mask-cong₁ - : {S₁ S₂ : Subset n} - → S₁ ≗ S₂ - → (xs : ∣ Values n ∣) - → mask S₁ xs ≋ mask S₂ xs - mask-cong₁ S₁≋S₂ _ i = reflexive (if-cong (S₁≋S₂ i)) - - merge-cong₂ - : (xs : ∣ Values n ∣) - → {S₁ S₂ : Subset n} - → S₁ ≗ S₂ - → merge xs S₁ ≈ merge xs S₂ - merge-cong₂ xs S₁≋S₂ = cong sumₛ (mask-cong₁ S₁≋S₂ xs) - -module _ where - - open Setoid - - opaque - unfolding Values - ≋-isEquiv : ∀ n → IsEquivalence (_≈_ (Values n)) - ≋-isEquiv = ≋-isEquivalence - -module _ {n : ℕ} where - - opaque - - unfolding _⊕_ - - ⊕-cong : {x y u v : ≋.Carrier {n}} → x ≋ y → u ≋ v → x ⊕ u ≋ y ⊕ v - ⊕-cong x≋y u≋v i = ∙-cong (x≋y i) (u≋v i) - - ⊕-assoc : (x y z : ≋.Carrier {n}) → (x ⊕ y) ⊕ z ≋ x ⊕ (y ⊕ z) - ⊕-assoc x y z i = assoc (x i) (y i) (z i) - - ⊕-identityˡ : (x : ≋.Carrier {n}) → <ε> ⊕ x ≋ x - ⊕-identityˡ x i = identityˡ (x i) - - ⊕-identityʳ : (x : ≋.Carrier {n}) → x ⊕ <ε> ≋ x - ⊕-identityʳ x i = identityʳ (x i) - - ⊕-comm : (x y : ≋.Carrier {n}) → x ⊕ y ≋ y ⊕ x - ⊕-comm x y i = comm (x i) (y i) - -module Algebra where - - open CommutativeMonoid - - Valuesₘ : ℕ → CommutativeMonoid 0ℓ 0ℓ - Valuesₘ n .Carrier = ∣ Values n ∣ - Valuesₘ n ._≈_ = _≋_ - Valuesₘ n ._∙_ = _⊕_ - Valuesₘ n .ε = <ε> - Valuesₘ n .isCommutativeMonoid = record - { isMonoid = record - { isSemigroup = record - { isMagma = record - { isEquivalence = ≋-isEquiv n - ; ∙-cong = ⊕-cong - } - ; assoc = ⊕-assoc - } - ; identity = ⊕-identityˡ , ⊕-identityʳ - } - ; comm = ⊕-comm - } - -module Object where - - opaque - unfolding FromMonoid.μ - Valuesₘ : ℕ → Obj.CommutativeMonoid - Valuesₘ n = fromCMonoid (Algebra.Valuesₘ n) - -opaque - - unfolding Values - - [] : ∣ Values 0 ∣ - [] = Vec.[] - - []-unique : (xs ys : ∣ Values 0 ∣) → xs ≋ ys - []-unique xs ys () - -module _ {n m : ℕ} where - - opaque - - unfolding Values - - _++_ : ∣ Values n ∣ → ∣ Values m ∣ → ∣ Values (n + m) ∣ - _++_ = Vec._++_ - - infixr 5 _++_ - - ++-cong - : (xs xs′ : ∣ Values n ∣) - {ys ys′ : ∣ Values m ∣} - → xs ≋ xs′ - → ys ≋ ys′ - → xs ++ ys ≋ xs′ ++ ys′ - ++-cong xs xs′ xs≋xs′ ys≋ys′ i with splitAt n i - ... | inj₁ i = xs≋xs′ i - ... | inj₂ i = ys≋ys′ i - - splitₛ : Values (n + m) ⟶ₛ Values n ×ₛ Values m - to splitₛ v = v ∘ (_↑ˡ m) , v ∘ (n ↑ʳ_) - cong splitₛ v₁≋v₂ = v₁≋v₂ ∘ (_↑ˡ m) , v₁≋v₂ ∘ (n ↑ʳ_) - - ++ₛ : Values n ×ₛ Values m ⟶ₛ Values (n + m) - to ++ₛ (xs , ys) = xs ++ ys - cong ++ₛ (≗xs , ≗ys) = ++-cong _ _ ≗xs ≗ys - -opaque - - unfolding merge - - mask-⊕ - : {n : ℕ} - (xs ys : ∣ Values n ∣) - (S : Subset n) - → mask S (xs ⊕ ys) ≋ mask S xs ⊕ mask S ys - mask-⊕ xs ys S i with S i - ... | false = sym (identityˡ ε) - ... | true = refl - - sum-⊕ - : {n : ℕ} - → (xs ys : ∣ Values n ∣) - → sum (xs ⊕ ys) ≈ sum xs ∙ sum ys - sum-⊕ {zero} xs ys = sym (identityˡ ε) - sum-⊕ {suc n} xs ys = begin - (head xs ∙ head ys) ∙ sum (tail xs ⊕ tail ys) ≈⟨ ∙-congˡ (sum-⊕ (tail xs) (tail ys)) ⟩ - (head xs ∙ head ys) ∙ (sum (tail xs) ∙ sum (tail ys)) ≈⟨ assoc (head xs) (head ys) _ ⟩ - head xs ∙ (head ys ∙ (sum (tail xs) ∙ sum (tail ys))) ≈⟨ ∙-congˡ (assoc (head ys) (sum (tail xs)) _) ⟨ - head xs ∙ ((head ys ∙ sum (tail xs)) ∙ sum (tail ys)) ≈⟨ ∙-congˡ (∙-congʳ (comm (head ys) (sum (tail xs)))) ⟩ - head xs ∙ ((sum (tail xs) ∙ head ys) ∙ sum (tail ys)) ≈⟨ ∙-congˡ (assoc (sum (tail xs)) (head ys) _) ⟩ - head xs ∙ (sum (tail xs) ∙ (head ys ∙ sum (tail ys))) ≈⟨ assoc (head xs) (sum (tail xs)) _ ⟨ - (head xs ∙ sum (tail xs)) ∙ (head ys ∙ sum (tail ys)) ∎ - where - open ≈-Reasoning Valueₛ - - merge-⊕ - : {n : ℕ} - (xs ys : ∣ Values n ∣) - (S : Subset n) - → merge (xs ⊕ ys) S ≈ merge xs S ∙ merge ys S - merge-⊕ {n} xs ys S = begin - sum (mask S (xs ⊕ ys)) ≈⟨ cong sumₛ (mask-⊕ xs ys S) ⟩ - sum (mask S xs ⊕ mask S ys) ≈⟨ sum-⊕ (mask S xs) (mask S ys) ⟩ - sum (mask S xs) ∙ sum (mask S ys) ∎ - where - open ≈-Reasoning Valueₛ - - mask-<ε> : {n : ℕ} (S : Subset n) → mask {n} S <ε> ≋ <ε> - mask-<ε> S i with S i - ... | false = refl - ... | true = refl - - sum-<ε> : (n : ℕ) → sum {n} <ε> ≈ ε - sum-<ε> zero = refl - sum-<ε> (suc n) = trans (identityˡ (sum {n} <ε>)) (sum-<ε> n) - - merge-<ε> : {n : ℕ} (S : Subset n) → merge {n} <ε> S ≈ ε - merge-<ε> {n} S = begin - sum (mask S <ε>) ≈⟨ cong sumₛ (mask-<ε> S) ⟩ - sum {n} <ε> ≈⟨ sum-<ε> n ⟩ - ε ∎ - where - open ≈-Reasoning Valueₛ - - merge-⁅⁆ - : {n : ℕ} - (xs : ∣ Values n ∣) - (i : Fin n) - → merge xs ⁅ i ⁆ ≈ lookup xs i - merge-⁅⁆ {suc n} xs zero = trans (∙-congˡ (sum-<ε> n)) (identityʳ (head xs)) - merge-⁅⁆ {suc n} xs (suc i) = begin - ε ∙ merge (tail xs) ⁅ i ⁆ ≈⟨ identityˡ (sum (mask ⁅ i ⁆ (tail xs))) ⟩ - merge (tail xs) ⁅ i ⁆ ≈⟨ merge-⁅⁆ (tail xs) i ⟩ - tail xs i ∎ - where - open ≈-Reasoning Valueₛ - -opaque - - unfolding Values - - push : {A B : ℕ} → ∣ Values A ∣ → (Fin A → Fin B) → ∣ Values B ∣ - push v f = merge v ∘ preimage f ∘ ⁅_⁆ - - pull : {A B : ℕ} → ∣ Values B ∣ → (Fin A → Fin B) → ∣ Values A ∣ - pull v f = v ∘ f - -insert-f0-0 - : {A B : ℕ} - (f : Fin (suc A) → Fin (suc B)) - → Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero) -insert-f0-0 {A} {B} f = ρ , ρf0≡0 - where - ρ : Permutation′ (suc B) - ρ = insert (f zero) zero id - ρf0≡0 : ρ ⟨$⟩ʳ f zero ≡ zero - ρf0≡0 with f zero ≟ f zero - ... | yes _ = ≡.refl - ... | no f0≢f0 with () ← f0≢f0 ≡.refl - -opaque - unfolding push - push-cong - : {A B : ℕ} - → (v : ∣ Values A ∣) - {f g : Fin A → Fin B} - → f ≗ g - → push v f ≋ push v g - push-cong v f≋g i = merge-cong₂ v (≡.cong ⁅ i ⁆ ∘ f≋g) - -opaque - unfolding Values - removeAt : {n : ℕ} → ∣ Values (suc n) ∣ → Fin (suc n) → ∣ Values n ∣ - removeAt v i = Vec.removeAt v i - -opaque - unfolding merge removeAt - merge-removeAt - : {A : ℕ} - (k : Fin (suc A)) - (v : ∣ Values (suc A) ∣) - (S : Subset (suc A)) - → merge v S ≈ lookup v k when S k ∙ merge (removeAt v k) (Vec.removeAt S k) - merge-removeAt {A} zero v S = refl - merge-removeAt {suc A} (suc k) v S = begin - v0? ∙ merge (tail v) (Vec.tail S) ≈⟨ ∙-congˡ (merge-removeAt k (tail v) (Vec.tail S)) ⟩ - v0? ∙ (vk? ∙ merge (tail v-) (Vec.tail S-)) ≈⟨ assoc v0? vk? _ ⟨ - (v0? ∙ vk?) ∙ merge (tail v-) (Vec.tail S-) ≈⟨ ∙-congʳ (comm v0? vk?) ⟩ - (vk? ∙ v0?) ∙ merge (tail v-) (Vec.tail S-) ≈⟨ assoc vk? v0? _ ⟩ - vk? ∙ (v0? ∙ merge (tail v-) (Vec.tail S-)) ≡⟨⟩ - vk? ∙ merge v- S- ∎ - where - open ≈-Reasoning Valueₛ - v0? vk? : Value - v0? = head v when Vec.head S - vk? = tail v k when Vec.tail S k - v- : Vector Value (suc A) - v- = removeAt v (suc k) - S- : Subset (suc A) - S- = Vec.removeAt S (suc k) - -opaque - unfolding merge pull removeAt - merge-preimage-ρ - : {A B : ℕ} - → (ρ : Permutation A B) - → (v : ∣ Values A ∣) - (S : Subset B) - → merge v (preimage (ρ ⟨$⟩ʳ_) S) ≈ merge (pull v (ρ ⟨$⟩ˡ_)) S - merge-preimage-ρ {zero} {zero} ρ v S = refl - merge-preimage-ρ {zero} {suc B} ρ v S with () ← ρ ⟨$⟩ˡ zero - merge-preimage-ρ {suc A} {zero} ρ v S with () ← ρ ⟨$⟩ʳ zero - merge-preimage-ρ {suc A} {suc B} ρ v S = begin - merge v (preimage ρʳ S) ≈⟨ merge-removeAt (ρˡ zero) v (preimage ρʳ S) ⟩ - mask (preimage ρʳ S) v (ρˡ zero) ∙ merge v- [preimage-ρʳ-S]- ≈⟨ ∙-congʳ ≈vρˡ0? ⟩ - mask S (pull v ρˡ) zero ∙ merge v- [preimage-ρʳ-S]- ≈⟨ ∙-congˡ (merge-cong₂ v- preimage-) ⟩ - mask S (pull v ρˡ) zero ∙ merge v- (preimage ρʳ- S-) ≈⟨ ∙-congˡ (merge-preimage-ρ ρ- v- S-) ⟩ - mask S (pull v ρˡ) zero ∙ merge (pull v- ρˡ-) S- ≈⟨ ∙-congˡ (merge-cong S- (reflexive ∘ pull-v-ρˡ-)) ⟩ - mask S (pull v ρˡ) zero ∙ merge (tail (pull v ρˡ)) S- ≡⟨⟩ - merge (pull v ρˡ) S ∎ - where - ρˡ : Fin (suc B) → Fin (suc A) - ρˡ = ρ ⟨$⟩ˡ_ - ρʳ : Fin (suc A) → Fin (suc B) - ρʳ = ρ ⟨$⟩ʳ_ - ρ- : Permutation A B - ρ- = remove (ρˡ zero) ρ - ρˡ- : Fin B → Fin A - ρˡ- = ρ- ⟨$⟩ˡ_ - ρʳ- : Fin A → Fin B - ρʳ- = ρ- ⟨$⟩ʳ_ - v- : ∣ Values A ∣ - v- = removeAt v (ρˡ zero) - S- : Subset B - S- = S ∘ suc - [preimage-ρʳ-S]- : Subset A - [preimage-ρʳ-S]- = Vec.removeAt (preimage ρʳ S) (ρˡ zero) - vρˡ0? : Value - vρˡ0? = head (pull v ρˡ) when S zero - ≈vρˡ0? : mask (S ∘ ρʳ ∘ ρˡ) (pull v ρˡ) zero ≈ mask S (pull v ρˡ) zero - ≈vρˡ0? = mask-cong₁ (λ i → ≡.cong S (inverseʳ ρ {i})) (pull v ρˡ) zero - module _ where - open ≡-Reasoning - preimage- : [preimage-ρʳ-S]- ≗ preimage ρʳ- S- - preimage- x = begin - [preimage-ρʳ-S]- x ≡⟨⟩ - Vec.removeAt (preimage ρʳ S) (ρˡ zero) x ≡⟨⟩ - S (ρʳ (punchIn (ρˡ zero) x)) ≡⟨ ≡.cong S (punchIn-permute ρ (ρˡ zero) x) ⟩ - S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x)) ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩ - S (punchIn zero (ρʳ- x)) ≡⟨⟩ - S (suc (ρʳ- x)) ≡⟨⟩ - preimage ρʳ- S- x ∎ - pull-v-ρˡ- : pull v- ρˡ- ≗ tail (pull v ρˡ) - pull-v-ρˡ- i = begin - v- (ρˡ- i) ≡⟨⟩ - v (punchIn (ρˡ zero) (punchOut {A} {ρˡ zero} _)) ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩ - v (ρˡ (punchIn (ρʳ (ρˡ zero)) i)) ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h i))) (inverseʳ ρ) ⟩ - v (ρˡ (punchIn zero i)) ≡⟨⟩ - v (ρˡ (suc i)) ≡⟨⟩ - tail (v ∘ ρˡ) i ∎ - open ≈-Reasoning Valueₛ - -opaque - - unfolding push merge mask - - mutual - - merge-preimage - : {A B : ℕ} - (f : Fin A → Fin B) - → (v : ∣ Values A ∣) - (S : Subset B) - → merge v (preimage f S) ≈ merge (push v f) S - merge-preimage {zero} {zero} f v S = refl - merge-preimage {zero} {suc B} f v S = sym (trans (cong sumₛ (mask-<ε> S)) (sum-<ε> (suc B))) - merge-preimage {suc A} {zero} f v S with () ← f zero - merge-preimage {suc A} {suc B} f v S with insert-f0-0 f - ... | ρ , ρf0≡0 = begin - merge v (preimage f S) ≈⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨ - merge v (preimage (ρˡ ∘ ρʳ ∘ f) S) ≡⟨⟩ - merge v (preimage (ρʳ ∘ f) (preimage ρˡ S)) ≈⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩ - merge (push v (ρʳ ∘ f)) (preimage ρˡ S) ≈⟨ merge-preimage-ρ (flip ρ) (push v (ρʳ ∘ f)) S ⟩ - merge (pull (push v (ρʳ ∘ f)) ρʳ) S ≈⟨ merge-cong S (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) ⟩ - merge (push v (ρˡ ∘ ρʳ ∘ f)) S ≈⟨ merge-cong S (push-cong v (λ x → inverseˡ ρ {f x})) ⟩ - merge (push v f) S ∎ - where - open ≈-Reasoning Valueₛ - ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B) - ρʳ = ρ ⟨$⟩ʳ_ - ρˡ = ρ ⟨$⟩ˡ_ - - merge-preimage-f0≡0 - : {A B : ℕ} - (f : Fin (suc A) → Fin (suc B)) - → f zero ≡ zero - → (v : ∣ Values (suc A) ∣) - (S : Subset (suc B)) - → merge v (preimage f S) ≈ merge (push v f) S - merge-preimage-f0≡0 {A} {B} f f0≡0 v S - using S0 , S- ← S zero , S ∘ suc - using v0 , v- ← head v , tail v - using f0 , f- ← f zero , f ∘ suc = begin - merge v f⁻¹[S] ≡⟨⟩ - v0? ∙ merge v- f⁻¹[S]- ≈⟨ ∙-congˡ (merge-preimage f- v- S) ⟩ - v0? ∙ merge f[v-] S ≡⟨⟩ - v0? ∙ (f[v-]0? ∙ merge f[v-]- S-) ≈⟨ assoc v0? f[v-]0? (merge f[v-]- S-) ⟨ - v0? ∙ f[v-]0? ∙ merge f[v-]- S- ≈⟨ ∙-congʳ v0?∙f[v-]0?≈f[v]0? ⟩ - f[v]0? ∙ merge f[v-]- S- ≈⟨ ∙-congˡ (merge-cong S- ≋f[v]-) ⟩ - f[v]0? ∙ merge f[v]- S- ≡⟨⟩ - merge f[v] S ∎ - where - open ≈-Reasoning Valueₛ - f⁻¹[S] : Subset (suc A) - f⁻¹[S] = preimage f S - f⁻¹[S]- : Subset A - f⁻¹[S]- = f⁻¹[S] ∘ suc - f⁻¹[S]0 : Bool - f⁻¹[S]0 = f⁻¹[S] zero - f[v] : ∣ Values (suc B) ∣ - f[v] = push v f - f[v]- : Vector Value B - f[v]- = tail f[v] - f[v]0 : Value - f[v]0 = head f[v] - f[v-] : ∣ Values (suc B) ∣ - f[v-] = push v- f- - f[v-]- : Vector Value B - f[v-]- = tail f[v-] - f[v-]0 : Value - f[v-]0 = head f[v-] - v0? f[v-]0? v0?+[f[v-]0?] f[v]0? : Value - v0? = v0 when f⁻¹[S]0 - f[v-]0? = f[v-]0 when S0 - v0?+[f[v-]0?] = if S0 then v0? ∙ f[v-]0 else v0? - f[v]0? = f[v]0 when S0 - v0?∙f[v-]0?≈f[v]0? : v0? ∙ f[v-]0? ≈ f[v]0? - v0?∙f[v-]0?≈f[v]0? rewrite f0≡0 with S0 - ... | true = refl - ... | false = identityˡ ε - ≋f[v]- : f[v-]- ≋ f[v]- - ≋f[v]- x rewrite f0≡0 = sym (identityˡ (push v- f- (suc x))) - -opaque - unfolding push - merge-push - : {A B C : ℕ} - (f : Fin A → Fin B) - (g : Fin B → Fin C) - → (v : ∣ Values A ∣) - → push v (g ∘ f) ≋ push (push v f) g - merge-push f g v i = merge-preimage f v (preimage g ⁅ i ⁆) |
