aboutsummaryrefslogtreecommitdiff
path: root/Data/Vector.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Data/Vector.agda')
-rw-r--r--Data/Vector.agda126
1 files changed, 126 insertions, 0 deletions
diff --git a/Data/Vector.agda b/Data/Vector.agda
new file mode 100644
index 0000000..874f0b2
--- /dev/null
+++ b/Data/Vector.agda
@@ -0,0 +1,126 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Data.Vector where
+
+open import Data.Nat.Base using (ℕ)
+open import Data.Vec.Functional using (Vector; head; tail; []; removeAt; map; _++_) public
+open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning)
+open import Function.Base using (∣_⟩-_; _∘_)
+open import Data.Fin.Base using (Fin; toℕ; _↑ˡ_; _↑ʳ_)
+open ℕ
+open Fin
+
+foldl
+ : ∀ {n : ℕ} {A : Set} (B : ℕ → Set)
+ → (∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k)))
+ → B zero
+ → Vector A n
+ → B n
+foldl {zero} B ⊕ e v = e
+foldl {suc n} B ⊕ e v = foldl (B ∘ suc) ⊕ (⊕ e (head v)) (tail v)
+
+foldl-cong
+ : {n : ℕ} {A : Set}
+ (B : ℕ → Set)
+ {f g : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))}
+ → (∀ {k} → ∀ x y → f {k} x y ≡ g {k} x y)
+ → (e : B zero)
+ → (v : Vector A n)
+ → foldl B f e v ≡ foldl B g e v
+foldl-cong {zero} B f≗g e v = ≡.refl
+foldl-cong {suc n} B {g = g} f≗g e v rewrite (f≗g e (head v)) = foldl-cong (B ∘ suc) f≗g (g e (head v)) (tail v)
+
+foldl-cong-arg
+ : {n : ℕ} {A : Set}
+ (B : ℕ → Set)
+ (f : ∀ {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k)))
+ → (e : B zero)
+ → {v w : Vector A n}
+ → v ≗ w
+ → foldl B f e v ≡ foldl B f e w
+foldl-cong-arg {zero} B f e v≗w = ≡.refl
+foldl-cong-arg {suc n} B f e {w = w} v≗w rewrite v≗w zero = foldl-cong-arg (B ∘ suc) f (f e (head w)) (v≗w ∘ suc)
+
+foldl-map
+ : {n : ℕ} {A : ℕ → Set} {B C : Set}
+ (f : ∀ {k : Fin n} → A (toℕ k) → B → A (suc (toℕ k)))
+ (g : C → B)
+ (x : A zero)
+ (xs : Vector C n)
+ → foldl A f x (map g xs)
+ ≡ foldl A (∣ f ⟩- g) x xs
+foldl-map {zero} f g e xs = ≡.refl
+foldl-map {suc n} f g e xs = foldl-map f g (f e (g (head xs))) (tail xs)
+
+foldl-fusion
+ : {n : ℕ}
+ {A : Set} {B C : ℕ → Set}
+ (h : {k : ℕ} → B k → C k)
+ → {f : {k : Fin n} → B (toℕ k) → A → B (suc (toℕ k))} {d : B zero}
+ → {g : {k : Fin n} → C (toℕ k) → A → C (suc (toℕ k))} {e : C zero}
+ → (h d ≡ e)
+ → ({k : Fin n} (b : B (toℕ k)) (x : A) → h (f {k} b x) ≡ g (h b) x)
+ → h ∘ foldl B f d ≗ foldl C g e
+foldl-fusion {zero} _ base _ _ = base
+foldl-fusion {suc n} {A} h {f} {d} {g} {e} base fuse xs = foldl-fusion h eq fuse (tail xs)
+ where
+ x₀ : A
+ x₀ = head xs
+ open ≡.≡-Reasoning
+ eq : h (f d x₀) ≡ g e x₀
+ eq = begin
+ h (f d x₀) ≡⟨ fuse d x₀ ⟩
+ g (h d) x₀ ≡⟨ ≡.cong-app (≡.cong g base) x₀ ⟩
+ g e x₀ ∎
+
+foldl-[]
+ : {A : Set}
+ (B : ℕ → Set)
+ (f : {k : Fin 0} → B (toℕ k) → A → B (suc (toℕ k)))
+ {e : B 0}
+ → foldl B f e [] ≡ e
+foldl-[] _ _ = ≡.refl
+
+open import Data.Sum using ([_,_]′)
+open import Data.Sum.Properties using ([,-]-cong; [-,]-cong; [,]-∘)
+open import Data.Fin.Properties using (splitAt-↑ˡ; splitAt-↑ʳ)
+open import Data.Fin using (splitAt)
+open import Data.Nat using (_+_)
+++-↑ˡ
+ : {n m : ℕ}
+ {A : Set}
+ (X : Vector A n)
+ (Y : Vector A m)
+ → (X ++ Y) ∘ (_↑ˡ m) ≗ X
+++-↑ˡ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m)
+
+++-↑ʳ
+ : {n m : ℕ}
+ {A : Set}
+ (X : Vector A n)
+ (Y : Vector A m)
+ → (X ++ Y) ∘ (n ↑ʳ_) ≗ Y
+++-↑ʳ {n} {m} X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i)
+
++-assocʳ : {m n o : ℕ} → Fin (m + (n + o)) → Fin (m + n + o)
++-assocʳ {m} {n} {o} = [ (λ x → x ↑ˡ n ↑ˡ o) , [ (λ x → (m ↑ʳ x) ↑ˡ o) , m + n ↑ʳ_ ]′ ∘ splitAt n ]′ ∘ splitAt m
+
+open ≡-Reasoning
+++-assoc
+ : {m n o : ℕ}
+ {A : Set}
+ (X : Vector A m)
+ (Y : Vector A n)
+ (Z : Vector A o)
+ → ((X ++ Y) ++ Z) ∘ +-assocʳ {m} ≗ X ++ (Y ++ Z)
+++-assoc {m} {n} {o} X Y Z i = begin
+ ((X ++ Y) ++ Z) (+-assocʳ {m} i) ≡⟨⟩
+ ((X ++ Y) ++ Z) ([ (λ x → x ↑ˡ n ↑ˡ o) , _ ]′ (splitAt m i)) ≡⟨ [,]-∘ ((X ++ Y) ++ Z) (splitAt m i) ⟩
+ [ ((X ++ Y) ++ Z) ∘ (λ x → x ↑ˡ n ↑ˡ o) , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ (X ++ Y) Z ∘ (_↑ˡ n)) (splitAt m i) ⟩
+ [ (X ++ Y) ∘ (_↑ˡ n) , _ ]′ (splitAt m i) ≡⟨ [-,]-cong (++-↑ˡ X Y) (splitAt m i) ⟩
+ [ X , ((X ++ Y) ++ Z) ∘ [ _ , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,]-∘ ((X ++ Y) ++ Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (_ ++ Z) ∘ (_↑ˡ o) ∘ (m ↑ʳ_) , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ˡ (X ++ Y) Z ∘ (m ↑ʳ_)) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ (X ++ Y) ∘ (m ↑ʳ_) , _ ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([-,]-cong (++-↑ʳ X Y) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , ((X ++ Y) ++ Z) ∘ (m + n ↑ʳ_) ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨ [,-]-cong ([,-]-cong (++-↑ʳ (X ++ Y) Z) ∘ splitAt n) (splitAt m i) ⟩
+ [ X , [ Y , Z ]′ ∘ splitAt n ]′ (splitAt m i) ≡⟨⟩
+ (X ++ (Y ++ Z)) i ∎