diff options
Diffstat (limited to 'Data')
| -rw-r--r-- | Data/Castable.agda | 50 | ||||
| -rw-r--r-- | Data/Circuit/Convert.agda | 201 | ||||
| -rw-r--r-- | Data/Circuit/Gate.agda | 137 | ||||
| -rw-r--r-- | Data/Circuit/Typecheck.agda | 78 | ||||
| -rw-r--r-- | Data/Hypergraph/Base.agda | 26 | ||||
| -rw-r--r-- | Data/Hypergraph/Edge.agda | 335 | ||||
| -rw-r--r-- | Data/Hypergraph/Label.agda | 36 | ||||
| -rw-r--r-- | Data/Hypergraph/Setoid.agda | 50 | ||||
| -rw-r--r-- | Data/Permutation.agda | 217 | ||||
| -rw-r--r-- | Data/Permutation/Sort.agda | 29 | ||||
| -rw-r--r-- | Data/SExp.agda | 75 | ||||
| -rw-r--r-- | Data/SExp/Parser.agda | 73 |
12 files changed, 1307 insertions, 0 deletions
diff --git a/Data/Castable.agda b/Data/Castable.agda new file mode 100644 index 0000000..4f85b3d --- /dev/null +++ b/Data/Castable.agda @@ -0,0 +1,50 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Castable where + +open import Level using (Level; suc; _⊔_) +open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; cong; module ≡-Reasoning) +open import Relation.Binary using (Sym; Trans; _⇒_) + +record IsCastable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} (B : A → Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where + + field + cast : {e e′ : A} → .(e ≡ e′) → B e → B e′ + cast-trans + : {m n o : A} + → .(eq₁ : m ≡ n) + .(eq₂ : n ≡ o) + (x : B m) + → cast eq₂ (cast eq₁ x) ≡ cast (trans eq₁ eq₂) x + cast-is-id : {m : A} .(eq : m ≡ m) (x : B m) → cast eq x ≡ x + subst-is-cast : {m n : A} (eq : m ≡ n) (x : B m) → subst B eq x ≡ cast eq x + + infix 3 _≈[_]_ + _≈[_]_ : {n m : A} → B n → .(eq : n ≡ m) → B m → Set ℓ₂ + _≈[_]_ x eq y = cast eq x ≡ y + + ≈-reflexive : {n : A} → _≡_ ⇒ (λ xs ys → _≈[_]_ {n} xs refl ys) + ≈-reflexive {n} {x} {y} eq = trans (cast-is-id refl x) eq + + ≈-sym : {m n : A} .{m≡n : m ≡ n} → Sym _≈[ m≡n ]_ _≈[ sym m≡n ]_ + ≈-sym {m} {n} {m≡n} {x} {y} x≡y = begin + cast (sym m≡n) y ≡⟨ cong (cast (sym m≡n)) x≡y ⟨ + cast (sym m≡n) (cast m≡n x) ≡⟨ cast-trans m≡n (sym m≡n) x ⟩ + cast (trans m≡n (sym m≡n)) x ≡⟨ cast-is-id (trans m≡n (sym m≡n)) x ⟩ + x ∎ + where + open ≡-Reasoning + + ≈-trans : {m n o : A} .{m≡n : m ≡ n} .{n≡o : n ≡ o} → Trans _≈[ m≡n ]_ _≈[ n≡o ]_ _≈[ trans m≡n n≡o ]_ + ≈-trans {m} {n} {o} {m≡n} {n≡o} {x} {y} {z} x≡y y≡z = begin + cast (trans m≡n n≡o) x ≡⟨ cast-trans m≡n n≡o x ⟨ + cast n≡o (cast m≡n x) ≡⟨ cong (cast n≡o) x≡y ⟩ + cast n≡o y ≡⟨ y≡z ⟩ + z ∎ + where + open ≡-Reasoning + +record Castable {ℓ₁ ℓ₂ : Level} {A : Set ℓ₁} : Set (suc (ℓ₁ ⊔ ℓ₂)) where + field + B : A → Set ℓ₂ + isCastable : IsCastable B diff --git a/Data/Circuit/Convert.agda b/Data/Circuit/Convert.agda new file mode 100644 index 0000000..ce6de69 --- /dev/null +++ b/Data/Circuit/Convert.agda @@ -0,0 +1,201 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Convert where + +open import Data.Nat.Base using (ℕ) +open import Data.Circuit.Gate using (Gate; GateLabel; cast-gate; cast-gate-is-id; subst-is-cast-gate) +open import Data.Fin.Base using (Fin) +open import Data.Hypergraph.Edge GateLabel using (Edge) +open import Data.Hypergraph.Base GateLabel using (Hypergraph; sortHypergraph; mkHypergraph) +open import Data.Hypergraph.Setoid GateLabel using (Hypergraph-Setoid; ≈-Hypergraph) +open import Data.Permutation using (fromList-↭; toList-↭) +open import Data.List using (length) +open import Data.Vec.Functional using (toVec; fromVec; toList; fromList) +open import Function.Bundles using (Equivalence; _↔_) +open import Function.Base using (_∘_; id) +open import Data.List.Relation.Binary.Permutation.Homogeneous using (Permutation) +open import Data.Product.Base using (proj₁; proj₂; _×_) +open import Data.Fin.Permutation using (flip; _⟨$⟩ˡ_) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) + +import Function.Reasoning as →-Reasoning +import Data.List.Relation.Binary.Permutation.Propositional as L +import Data.Vec.Functional.Relation.Binary.Permutation as V +import DecorationFunctor.Hypergraph.Labeled as LabeledHypergraph + +open LabeledHypergraph using (Hypergraph-same) renaming (Hypergraph to Hypergraph′; Hypergraph-setoid to Hypergraph-Setoid′) + +to : {v : ℕ} → Hypergraph v → Hypergraph′ v +to H = record + { h = length edges + ; a = arity ∘ fromList edges + ; j = fromVec ∘ ports ∘ fromList edges + ; l = label ∘ fromList edges + } + where + open Edge using (arity; ports; label) + open Hypergraph H + +from : {v : ℕ} → Hypergraph′ v → Hypergraph v +from {v} H = record + { edges = toList asEdge + } + where + open Hypergraph′ H + asEdge : Fin h → Edge v + asEdge e = record { label = l e ; ports = toVec (j e) } + +to-cong : {v : ℕ} {H H′ : Hypergraph v} → ≈-Hypergraph H H′ → Hypergraph-same (to H) (to H′) +to-cong {v} {H} {H′} ≈H = record + { ↔h = flip ρ + ; ≗a = ≗a + ; ≗j = ≗j + ; ≗l = ≗l + } + where + open Edge using (arity; ports; label) + open ≈-Hypergraph ≈H + open import Data.Fin.Permutation using (_⟨$⟩ʳ_; _⟨$⟩ˡ_; Permutation′; inverseʳ) + open import Data.Fin.Base using (cast) + open import Data.Fin.Properties using (cast-is-id) + ρ : Fin (length H′.edges) ↔ Fin (length H.edges) + ρ = proj₁ (fromList-↭ ↭edges) + + open ≡.≡-Reasoning + edges≗ρ∘edges′ : (i : Fin (length H.edges)) → fromList H.edges i ≡ fromList H′.edges (ρ ⟨$⟩ˡ i) + edges≗ρ∘edges′ i = begin + fromList H.edges i ≡⟨ ≡.cong (fromList H.edges) (inverseʳ ρ) ⟨ + fromList H.edges (ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ i)) ≡⟨ proj₂ (fromList-↭ ↭edges) (ρ ⟨$⟩ˡ i) ⟩ + fromList H′.edges (ρ ⟨$⟩ˡ i) ∎ + + ≗a : (e : Fin (Hypergraph′.h (to H))) + → Hypergraph′.a (to H) e + ≡ arity (fromList H′.edges (ρ ⟨$⟩ˡ e)) + ≗a = ≡.cong arity ∘ edges≗ρ∘edges′ + + ≗j : (e : Fin (Hypergraph′.h (to H))) + (i : Fin (Hypergraph′.a (to H) e)) + → fromVec (ports (fromList H.edges e)) i + ≡ fromVec (ports (fromList H′.edges (ρ ⟨$⟩ˡ e))) (cast (≗a e) i) + ≗j e i + rewrite edges≗ρ∘edges′ e + rewrite cast-is-id ≡.refl i = ≡.refl + + ≗l : (e : Fin (Hypergraph′.h (to H))) + → label (fromList H.edges e) + ≡ cast-gate (≡.sym (≗a e)) (label (fromList H′.edges (ρ ⟨$⟩ˡ e))) + ≗l e + rewrite edges≗ρ∘edges′ e + rewrite cast-gate-is-id ≡.refl (label (fromList H′.edges (ρ ⟨$⟩ˡ e))) = + ≡.refl + +module _ {v : ℕ} where + open import Data.Hypergraph.Edge GateLabel using (decTotalOrder; ≈-Edge; ≈-Edge-IsEquivalence; ≈-Edge⇒≡) + open import Data.List.Sort (decTotalOrder {v}) using (sort; sort-↭) + open import Data.Permutation.Sort (decTotalOrder {v}) using (sorted-≋) + open import Data.List.Relation.Binary.Pointwise using (Pointwise; Pointwise-≡⇒≡; map) + open import Data.Product.Base using (_,_) + open import Data.Hypergraph.Label using (HypergraphLabel) + open HypergraphLabel GateLabel using (isCastable) + open import Data.Castable using (IsCastable) + open IsCastable isCastable using (≈-reflexive; ≈-sym; ≈-trans) + from-cong + : {H H′ : Hypergraph′ v} + → Hypergraph-same H H′ + → ≈-Hypergraph (from H) (from H′) + from-cong {H} {H′} ≈H = record + { ≡sorted = ≡sorted + } + where + module H = Hypergraph′ H + module H′ = Hypergraph′ H′ + open Hypergraph′ + open Hypergraph-same ≈H using (↔h; ≗a; ≗l; ≗j; inverseˡ) renaming (from to f; to to t) + asEdge : (H : Hypergraph′ v) → Fin (h H) → Edge v + asEdge H e = record { label = l H e ; ports = toVec (j H e) } + + to-from : (e : Fin H′.h) → t (f e) ≡ e + to-from e = inverseˡ ≡.refl + + a∘to-from : (e : Fin H′.h) → H′.a (t (f e)) ≡ H′.a e + a∘to-from = ≡.cong H′.a ∘ to-from + + ≗a′ : (e : Fin H′.h) → H.a (f e) ≡ H′.a e + ≗a′ e = ≡.trans (≗a (f e)) (a∘to-from e) + + l≗ : (e : Fin H.h) → cast-gate (≗a e) (H.l e) ≡ H′.l (t e) + l≗ e = ≈-sym (≡.sym (≗l e)) + + l∘to-from : (e : Fin H′.h) → cast-gate (a∘to-from e) (H′.l (t (f e))) ≡ H′.l e + l∘to-from e rewrite to-from e = ≈-reflexive ≡.refl + + ≗l′ : (e : Fin H′.h) → cast-gate (≗a′ e) (H.l (f e)) ≡ H′.l e + ≗l′ e = ≈-trans {H.a _} (l≗ (f e)) (l∘to-from e) + + import Data.Vec.Relation.Binary.Equality.Cast as VecCast + open import Data.Vec using (cast) renaming (map to vecmap) + open import Data.Vec.Properties using (tabulate-cong; tabulate-∘; map-cast) + + open import Data.Fin.Base using () renaming (cast to fincast) + open import Data.Fin.Properties using () renaming (cast-trans to fincast-trans; cast-is-id to fincast-is-id) + + j∘to-from + : (e : Fin H′.h) (i : Fin (H′.a (t (f e)))) + → H′.j (t (f e)) i + ≡ H′.j e (fincast (a∘to-from e) i) + j∘to-from e i rewrite to-from e = ≡.cong (H′.j e) (≡.sym (fincast-is-id ≡.refl i)) + + open ≡.≡-Reasoning + + ≗j′ : (e : Fin H′.h) (i : Fin (H.a (f e))) → H.j (f e) i ≡ H′.j e (fincast (≗a′ e) i) + ≗j′ e i = begin + H.j (f e) i ≡⟨ ≗j (f e) i ⟩ + H′.j (t (f e)) (fincast _ i) ≡⟨ j∘to-from e (fincast _ i) ⟩ + H′.j e (fincast (a∘to-from e) (fincast _ i)) ≡⟨ ≡.cong (H′.j e) (fincast-trans (≗a (f e)) _ i) ⟩ + H′.j e (fincast (≗a′ e) i) ∎ + + cast-toVec + : {n m : ℕ} + {A : Set} + (m≡n : m ≡ n) + (f : Fin n → A) + → cast m≡n (toVec (f ∘ fincast m≡n)) ≡ toVec f + cast-toVec m≡n f rewrite m≡n = begin + cast _ (toVec (f ∘ (fincast _))) ≡⟨ VecCast.cast-is-id ≡.refl (toVec (f ∘ fincast ≡.refl)) ⟩ + toVec (f ∘ fincast _) ≡⟨ tabulate-∘ f (fincast ≡.refl) ⟩ + vecmap f (toVec (fincast _)) ≡⟨ ≡.cong (vecmap f) (tabulate-cong (fincast-is-id ≡.refl)) ⟩ + vecmap f (toVec id) ≡⟨ tabulate-∘ f id ⟨ + toVec f ∎ + + ≗p′ : (e : Fin H′.h) → cast (≗a′ e) (toVec (H.j (f e))) ≡ toVec (H′.j e) + ≗p′ e = begin + cast (≗a′ e) (toVec (H.j (f e))) ≡⟨ ≡.cong (cast (≗a′ e)) (tabulate-cong (≗j′ e)) ⟩ + cast _ (toVec (H′.j e ∘ fincast _)) ≡⟨ cast-toVec (≗a′ e) (H′.j e) ⟩ + toVec (H′.j e) ∎ + + H∘ρ≗H′ : (e : Fin H′.h) → asEdge H (↔h ⟨$⟩ˡ e) ≡ asEdge H′ e + H∘ρ≗H′ e = ≈-Edge⇒≡ record + { ≡arity = ≗a′ e + ; ≡label = ≗l′ e + ; ≡ports = ≗p′ e + } + + open Hypergraph using (edges) + open →-Reasoning + ≡sorted : sortHypergraph (from H) ≡ sortHypergraph (from H′) + ≡sorted = + flip ↔h , H∘ρ≗H′ ∶ asEdge H V.↭ asEdge H′ + |> toList-↭ ∶ toList (asEdge H) L.↭ toList (asEdge H′) + |> L.↭⇒↭ₛ′ ≈-Edge-IsEquivalence ∶ Permutation ≈-Edge (edges (from H)) (edges (from H′)) + |> sorted-≋ ∶ Pointwise ≈-Edge (sort (edges (from H))) (sort (edges (from H′))) + |> map ≈-Edge⇒≡ ∶ Pointwise _≡_ (sort (edges (from H))) (sort (edges (from H′))) + |> Pointwise-≡⇒≡ ∶ sort (edges (from H)) ≡ sort (edges (from H′)) + |> ≡.cong mkHypergraph ∶ sortHypergraph (from H) ≡ sortHypergraph (from H′) + +equiv : (v : ℕ) → Equivalence (Hypergraph-Setoid v) (Hypergraph-Setoid′ v) +equiv v = record + { to = to + ; from = from + ; to-cong = to-cong + ; from-cong = from-cong + } diff --git a/Data/Circuit/Gate.agda b/Data/Circuit/Gate.agda new file mode 100644 index 0000000..8ce7e0a --- /dev/null +++ b/Data/Circuit/Gate.agda @@ -0,0 +1,137 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Gate where + +open import Level using (0ℓ) +open import Data.Castable using (Castable) +open import Data.Hypergraph.Label using (HypergraphLabel) +open import Data.String using (String) +open import Data.Nat.Base using (ℕ; _≤_) +open import Data.Nat.Properties using (≤-refl; ≤-trans; ≤-antisym; ≤-total) +open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; isEquivalence; cong) +import Relation.Binary.PropositionalEquality as ≡ + +import Data.Nat as Nat +import Data.Fin as Fin + +data Gate : ℕ → Set where + ZERO : Gate 1 + ONE : Gate 1 + ID : Gate 2 + NOT : Gate 2 + AND : Gate 3 + OR : Gate 3 + XOR : Gate 3 + NAND : Gate 3 + NOR : Gate 3 + XNOR : Gate 3 + +cast-gate : {e e′ : ℕ} → .(e ≡ e′) → Gate e → Gate e′ +cast-gate {1} {1} eq g = g +cast-gate {2} {2} eq g = g +cast-gate {3} {3} eq g = g + +cast-gate-trans + : {m n o : ℕ} + → .(eq₁ : m ≡ n) + .(eq₂ : n ≡ o) + (g : Gate m) + → cast-gate eq₂ (cast-gate eq₁ g) ≡ cast-gate (trans eq₁ eq₂) g +cast-gate-trans {1} {1} {1} eq₁ eq₂ g = refl +cast-gate-trans {2} {2} {2} eq₁ eq₂ g = refl +cast-gate-trans {3} {3} {3} eq₁ eq₂ g = refl + +cast-gate-is-id : {m : ℕ} .(eq : m ≡ m) (g : Gate m) → cast-gate eq g ≡ g +cast-gate-is-id {1} eq g = refl +cast-gate-is-id {2} eq g = refl +cast-gate-is-id {3} eq g = refl + +subst-is-cast-gate : {m n : ℕ} (eq : m ≡ n) (g : Gate m) → subst Gate eq g ≡ cast-gate eq g +subst-is-cast-gate refl g = sym (cast-gate-is-id refl g) + +GateCastable : Castable +GateCastable = record + { B = Gate + ; isCastable = record + { cast = cast-gate + ; cast-trans = cast-gate-trans + ; cast-is-id = cast-gate-is-id + ; subst-is-cast = subst-is-cast-gate + } + } + +showGate : (n : ℕ) → Gate n → String +showGate _ ZERO = "ZERO" +showGate _ ONE = "ONE" +showGate _ ID = "ID" +showGate _ NOT = "NOT" +showGate _ AND = "AND" +showGate _ OR = "OR" +showGate _ XOR = "XOR" +showGate _ NAND = "NAND" +showGate _ NOR = "NOR" +showGate _ XNOR = "XNOR" + +toℕ : (n : ℕ) → Gate n → ℕ +toℕ 1 ZERO = 0 +toℕ 1 ONE = 1 +toℕ 2 ID = 0 +toℕ 2 NOT = 1 +toℕ 3 AND = 0 +toℕ 3 OR = 1 +toℕ 3 XOR = 2 +toℕ 3 NAND = 3 +toℕ 3 NOR = 4 +toℕ 3 XNOR = 5 + +toℕ-injective : {n : ℕ} {x y : Gate n} → toℕ n x ≡ toℕ n y → x ≡ y +toℕ-injective {1} {ZERO} {ZERO} refl = refl +toℕ-injective {1} {ONE} {ONE} refl = refl +toℕ-injective {2} {ID} {ID} refl = refl +toℕ-injective {2} {NOT} {NOT} refl = refl +toℕ-injective {3} {AND} {AND} refl = refl +toℕ-injective {3} {OR} {OR} refl = refl +toℕ-injective {3} {XOR} {XOR} refl = refl +toℕ-injective {3} {NAND} {NAND} refl = refl +toℕ-injective {3} {NOR} {NOR} refl = refl +toℕ-injective {3} {XNOR} {XNOR} refl = refl + +open import Relation.Binary using (Rel; Decidable; DecidableEquality) +import Relation.Nullary.Decidable as Dec + +_[_≤_] : (n : ℕ) → Rel (Gate n) 0ℓ +_[_≤_] n x y = toℕ n x ≤ toℕ n y + +_≟_ : {n : ℕ} → DecidableEquality (Gate n) +_≟_ {n} x y = Dec.map′ toℕ-injective (cong (toℕ n)) (toℕ n x Nat.≟ toℕ n y) + +_≤?_ : {n : ℕ} → Decidable (n [_≤_]) +_≤?_ {n} x y = toℕ n x Nat.≤? toℕ n y + +GateLabel : HypergraphLabel +GateLabel = record + { Label = Gate + ; showLabel = showGate + ; isCastable = record + { cast = cast-gate + ; cast-trans = cast-gate-trans + ; cast-is-id = cast-gate-is-id + ; subst-is-cast = subst-is-cast-gate + } + ; _[_≤_] = λ n x y → toℕ n x ≤ toℕ n y + ; isDecTotalOrder = λ n → record + { isTotalOrder = record + { isPartialOrder = record + { isPreorder = record + { isEquivalence = isEquivalence + ; reflexive = λ { refl → ≤-refl } + ; trans = ≤-trans + } + ; antisym = λ i≤j j≤i → toℕ-injective (≤-antisym i≤j j≤i) + } + ; total = λ { x y → ≤-total (toℕ n x) (toℕ n y) } + } + ; _≟_ = _≟_ + ; _≤?_ = _≤?_ + } + } diff --git a/Data/Circuit/Typecheck.agda b/Data/Circuit/Typecheck.agda new file mode 100644 index 0000000..e34ea44 --- /dev/null +++ b/Data/Circuit/Typecheck.agda @@ -0,0 +1,78 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Typecheck where + +open import Data.SExp using (SExp) +open import Data.Circuit.Gate using (GateLabel; Gate) +open import Data.Hypergraph.Label using (HypergraphLabel) +open import Data.Hypergraph.Edge GateLabel using (Edge) +open import Data.Hypergraph.Base GateLabel using (Hypergraph) + +open import Data.List using (List; length) renaming (map to mapL) +open import Data.List.Effectful using () renaming (module TraversableA to ListTraversable) +open import Data.Maybe using (Maybe) renaming (map to mapM) +open import Data.Nat using (ℕ; _<?_; _≟_) +open import Data.String using (String) +open import Data.Product using (_×_; _,_; Σ) +open import Data.Vec using (Vec; []; _∷_; fromList) renaming (map to mapV) +open import Data.Vec.Effectful using () renaming (module TraversableA to VecTraversable) +open import Data.Maybe.Effectful using (applicative) +open import Data.Fin using (Fin; #_; fromℕ<) +open import Level using (0ℓ) + +import Relation.Binary.PropositionalEquality as ≡ + +open List +open SExp +open Gate +open Maybe + +gate : {n a : ℕ} (g : Gate a) → Vec (Fin n) a → Edge n +gate g p = record { label = g; ports = p } + +typeCheckGateLabel : SExp → Maybe (Σ ℕ Gate) +typeCheckGateLabel (Atom "one") = just (1 , ONE) +typeCheckGateLabel (Atom "zero") = just (1 , ZERO) +typeCheckGateLabel (Atom "not") = just (2 , NOT) +typeCheckGateLabel (Atom "id") = just (2 , ID) +typeCheckGateLabel (Atom "and") = just (3 , AND) +typeCheckGateLabel (Atom "or") = just (3 , OR) +typeCheckGateLabel (Atom "xor") = just (3 , XOR) +typeCheckGateLabel (Atom "nand") = just (3 , NAND) +typeCheckGateLabel (Atom "nor") = just (3 , NOR) +typeCheckGateLabel (Atom "xnor") = just (3 , XNOR) +typeCheckGateLabel _ = nothing + +open import Relation.Nullary.Decidable using (Dec; yes; no) +open Dec +open VecTraversable {0ℓ} applicative using () renaming (sequenceA to vecSequenceA) +open ListTraversable {0ℓ} applicative using () renaming (sequenceA to listSequenceA) + +typeCheckPort : (v : ℕ) → SExp → Maybe (Fin v) +typeCheckPort v (Nat n) with n <? v +... | yes n<v = just (fromℕ< n<v) +... | no _ = nothing +typeCheckPort _ _ = nothing + +typeCheckPorts : (v n : ℕ) → List SExp → Maybe (Vec (Fin v) n) +typeCheckPorts v n xs with length xs ≟ n +... | yes ≡.refl = vecSequenceA (mapV (typeCheckPort v) (fromList xs)) +... | no _ = nothing + +typeCheckGate : (v : ℕ) → SExp → Maybe (Edge v) +typeCheckGate v (SExps (labelString ∷ ports)) with typeCheckGateLabel labelString +... | just (n , label) = mapM (gate label) (typeCheckPorts v n ports) +... | nothing = nothing +typeCheckGate v _ = nothing + +typeCheckHeader : SExp → Maybe ℕ +typeCheckHeader (SExps (Atom "hypergraph" ∷ Nat n ∷ [])) = just n +typeCheckHeader _ = nothing + +typeCheckHypergraph : SExp → Maybe (Σ ℕ Hypergraph) +typeCheckHypergraph (SExps (x ∷ xs)) with typeCheckHeader x +... | nothing = nothing +... | just n with listSequenceA (mapL (typeCheckGate n) xs) +... | just e = just (n , record { edges = e }) +... | nothing = nothing +typeCheckHypergraph _ = nothing diff --git a/Data/Hypergraph/Base.agda b/Data/Hypergraph/Base.agda new file mode 100644 index 0000000..6988cf0 --- /dev/null +++ b/Data/Hypergraph/Base.agda @@ -0,0 +1,26 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) + +module Data.Hypergraph.Base (HL : HypergraphLabel) where + +open import Data.Hypergraph.Edge HL using (Edge; decTotalOrder; showEdge) +open import Data.List.Base using (List; map) +open import Data.Nat.Base using (ℕ) +open import Data.String using (String; unlines) + +import Data.List.Sort as Sort + +record Hypergraph (v : ℕ) : Set where + constructor mkHypergraph + field + edges : List (Edge v) + +sortHypergraph : {v : ℕ} → Hypergraph v → Hypergraph v +sortHypergraph {v} H = record { edges = sort edges } + where + open Hypergraph H + open Sort decTotalOrder using (sort) + +showHypergraph : {v : ℕ} → Hypergraph v → String +showHypergraph record { edges = e} = unlines (map showEdge e) diff --git a/Data/Hypergraph/Edge.agda b/Data/Hypergraph/Edge.agda new file mode 100644 index 0000000..13b9278 --- /dev/null +++ b/Data/Hypergraph/Edge.agda @@ -0,0 +1,335 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) + +module Data.Hypergraph.Edge (HL : HypergraphLabel) where + + +open import Relation.Binary using (Rel; IsStrictTotalOrder; Tri; Trichotomous; _Respects_) +open import Data.Castable using (IsCastable) +open import Data.Fin using (Fin) +open import Data.Fin.Show using () renaming (show to showFin) +open import Data.Nat.Base using (ℕ; _<_) +open import Data.Nat.Properties using (<-irrefl; <-trans; <-resp₂-≡; <-cmp) +open import Data.Product.Base using (_,_; proj₁; proj₂) +open import Data.String using (String; _<+>_) +open import Data.Vec.Relation.Binary.Pointwise.Inductive using (≡⇒Pointwise-≡; Pointwise-≡⇒≡) +open import Data.Vec.Show using () renaming (show to showVec) +open import Level using (0ℓ) +open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder) +open import Relation.Binary.Structures using (IsEquivalence) +open import Relation.Nullary using (¬_) + +import Data.Fin.Base as Fin +import Data.Fin.Properties as FinProp +import Data.Vec.Base as VecBase +import Data.Vec.Relation.Binary.Equality.Cast as VecCast +import Data.Vec.Relation.Binary.Lex.Strict as Lex +import Relation.Binary.PropositionalEquality as ≡ +import Relation.Binary.Properties.DecTotalOrder as DTOP +import Relation.Binary.Properties.StrictTotalOrder as STOP + +module HL = HypergraphLabel HL +open HL using (Label; cast; cast-is-id) +open VecBase using (Vec) + +record Edge (v : ℕ) : Set where + field + {arity} : ℕ + label : Label arity + ports : Vec (Fin v) arity + +open ≡ using (_≡_) +open VecCast using (_≈[_]_) + +record ≈-Edge {n : ℕ} (E E′ : Edge n) : Set where + module E = Edge E + module E′ = Edge E′ + field + ≡arity : E.arity ≡ E′.arity + ≡label : cast ≡arity E.label ≡ E′.label + ≡ports : E.ports ≈[ ≡arity ] E′.ports + +≈-Edge-refl : {v : ℕ} {x : Edge v} → ≈-Edge x x +≈-Edge-refl {_} {x} = record + { ≡arity = ≡.refl + ; ≡label = HL.≈-reflexive ≡.refl + ; ≡ports = VecCast.≈-reflexive ≡.refl + } + where + open Edge x using (arity; label) + open DecTotalOrder (HL.decTotalOrder arity) using (module Eq) + +≈-Edge-sym : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ≈-Edge y x +≈-Edge-sym {_} {x} {y} x≈y = record + { ≡arity = ≡.sym ≡arity + ; ≡label = HL.≈-sym ≡label + ; ≡ports = VecCast.≈-sym ≡ports + } + where + open ≈-Edge x≈y + open DecTotalOrder (HL.decTotalOrder E.arity) using (module Eq) + +≈-Edge-trans : {v : ℕ} {i j k : Edge v} → ≈-Edge i j → ≈-Edge j k → ≈-Edge i k +≈-Edge-trans {_} {i} {j} {k} i≈j j≈k = record + { ≡arity = ≡.trans i≈j.≡arity j≈k.≡arity + ; ≡label = HL.≈-trans i≈j.≡label j≈k.≡label + ; ≡ports = VecCast.≈-trans i≈j.≡ports j≈k.≡ports + } + where + module i≈j = ≈-Edge i≈j + module j≈k = ≈-Edge j≈k + +open import Relation.Binary using (IsEquivalence) +≈-Edge-IsEquivalence : {v : ℕ} → IsEquivalence (≈-Edge {v}) +≈-Edge-IsEquivalence = record + { refl = ≈-Edge-refl + ; sym = ≈-Edge-sym + ; trans = ≈-Edge-trans + } + +open HL using (_[_<_]) +_<<_ : {v a : ℕ} → Rel (Vec (Fin v) a) 0ℓ +_<<_ {v} = Lex.Lex-< _≡_ (Fin._<_ {v}) +data <-Edge {v : ℕ} : Edge v → Edge v → Set where + <-arity + : {x y : Edge v} + → Edge.arity x < Edge.arity y + → <-Edge x y + <-label + : {x y : Edge v} + (≡a : Edge.arity x ≡ Edge.arity y) + → Edge.arity y [ cast ≡a (Edge.label x) < Edge.label y ] + → <-Edge x y + <-ports + : {x y : Edge v} + (≡a : Edge.arity x ≡ Edge.arity y) + (≡l : Edge.label x HL.≈[ ≡a ] Edge.label y) + → VecBase.cast ≡a (Edge.ports x) << Edge.ports y + → <-Edge x y + +<-Edge-irrefl : {v : ℕ} {x y : Edge v} → ≈-Edge x y → ¬ <-Edge x y +<-Edge-irrefl record { ≡arity = ≡a } (<-arity n<m) = <-irrefl ≡a n<m +<-Edge-irrefl record { ≡label = ≡l } (<-label _ (_ , x≉y)) = x≉y ≡l +<-Edge-irrefl record { ≡ports = ≡p } (<-ports ≡.refl ≡l x<y) + = Lex.<-irrefl FinProp.<-irrefl (≡⇒Pointwise-≡ ≡p) x<y + +<-Edge-trans : {v : ℕ} {i j k : Edge v} → <-Edge i j → <-Edge j k → <-Edge i k +<-Edge-trans (<-arity i<j) (<-arity j<k) = <-arity (<-trans i<j j<k) +<-Edge-trans (<-arity i<j) (<-label ≡.refl j<k) = <-arity i<j +<-Edge-trans (<-arity i<j) (<-ports ≡.refl _ j<k) = <-arity i<j +<-Edge-trans (<-label ≡.refl i<j) (<-arity j<k) = <-arity j<k +<-Edge-trans {_} {i} (<-label ≡.refl i<j) (<-label ≡.refl j<k) + = <-label ≡.refl (<-label-trans i<j (<-respˡ-≈ (HL.≈-reflexive ≡.refl) j<k)) + where + open DTOP (HL.decTotalOrder (Edge.arity i)) using (<-respˡ-≈) renaming (<-trans to <-label-trans) +<-Edge-trans {k = k} (<-label ≡.refl i<j) (<-ports ≡.refl ≡.refl _) + = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) i<j) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respʳ-≈) +<-Edge-trans (<-ports ≡.refl _ _) (<-arity j<k) = <-arity j<k +<-Edge-trans {k = k} (<-ports ≡.refl ≡.refl _) (<-label ≡.refl j<k) + = <-label ≡.refl (<-respˡ-≈ (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) j<k) + where + open DTOP (HL.decTotalOrder (Edge.arity k)) using (<-respˡ-≈) +<-Edge-trans {j = j} (<-ports ≡.refl ≡l₁ i<j) (<-ports ≡.refl ≡l₂ j<k) + rewrite (VecCast.cast-is-id ≡.refl (Edge.ports j)) + = <-ports ≡.refl + (HL.≈-trans ≡l₁ ≡l₂) + (Lex.<-trans ≡-isPartialEquivalence FinProp.<-resp₂-≡ FinProp.<-trans i<j j<k) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respˡ-≈ : {v : ℕ} {y : Edge v} → (λ x → <-Edge x y) Respects ≈-Edge +<-Edge-respˡ-≈ ≈x (<-arity x₁<y) = <-arity (proj₂ <-resp₂-≡ ≡arity x₁<y) + where + open ≈-Edge ≈x using (≡arity) +<-Edge-respˡ-≈ {_} {y} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x₁<y) + = <-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x₁<y) + where + module y = Edge y + open DTOP (HL.decTotalOrder y.arity) using (<-respˡ-≈) +<-Edge-respˡ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x₁<y) + = <-ports + ≡.refl + (≡.cong (cast _) (HL.≈-reflexive ≡.refl)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x₁<y) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +<-Edge-respʳ-≈ : {v : ℕ} {x : Edge v} → <-Edge x Respects ≈-Edge +<-Edge-respʳ-≈ record { ≡arity = ≡a } (<-arity x<y₁) = <-arity (proj₁ <-resp₂-≡ ≡a x<y₁) +<-Edge-respʳ-≈ {_} {x} record { ≡arity = ≡.refl ; ≡label = ≡.refl } (<-label ≡.refl x<y₁) + = <-label ≡.refl (<-respʳ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y₁) + where + module x = Edge x + open DTOP (HL.decTotalOrder x.arity) using (<-respʳ-≈) +<-Edge-respʳ-≈ record { ≡arity = ≡.refl ; ≡label = ≡.refl; ≡ports = ≡.refl} (<-ports ≡.refl ≡.refl x<y₁) + = <-ports + ≡.refl + (≡.cong (cast _) (≡.sym (HL.≈-reflexive ≡.refl))) + (Lex.<-respectsʳ + ≡-isPartialEquivalence + FinProp.<-respʳ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y₁) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + +open Tri +open ≈-Edge +tri : {v : ℕ} → Trichotomous (≈-Edge {v}) (<-Edge {v}) +tri x y with <-cmp x.arity y.arity + where + module x = Edge x + module y = Edge y +tri x y | tri< x<y x≢y y≮x = tri< (<-arity x<y) (λ x≡y → x≢y (≡arity x≡y)) ¬y<x + where + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label ≡a _) = x≢y (≡.sym ≡a) + ¬y<x (<-ports ≡a _ _) = x≢y (≡.sym ≡a) +tri x y | tri≈ x≮y ≡.refl y≮x = compare-label + where + module x = Edge x + module y = Edge y + open StrictTotalOrder (HL.strictTotalOrder x.arity) using (compare) + import Relation.Binary.Properties.DecTotalOrder + open DTOP (HL.decTotalOrder x.arity) using (<-respˡ-≈) + compare-label : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) + compare-label with compare x.label y.label + ... | tri< x<y x≢y y≮x′ = tri< + (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) x<y)) + (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) + ¬y<x + where + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym ≡l) (cast-is-id ≡.refl y.label)) + ... | tri≈ x≮y′ x≡y′ y≮x′ = compare-ports + where + compare-ports : Tri (<-Edge x y) (≈-Edge x y) (<-Edge y x) + compare-ports with Lex.<-cmp ≡.sym FinProp.<-cmp x.ports y.ports + ... | tri< x<y x≢y y≮x″ = + tri< + (<-ports ≡.refl + (HL.≈-reflexive x≡y′) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + x<y)) + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + ¬y<x + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + ... | tri≈ x≮y″ x≡y″ y≮x″ = tri≈ + ¬x<y + (record { ≡arity = ≡.refl ; ≡label = HL.≈-reflexive x≡y′ ; ≡ports = VecCast.≈-reflexive (Pointwise-≡⇒≡ x≡y″) }) + ¬y<x + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) + ¬y<x : ¬ <-Edge y x + ¬y<x (<-arity y<x) = y≮x y<x + ¬y<x (<-label _ y<x) = y≮x′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) y<x) + ¬y<x (<-ports _ _ y<x) = + y≮x″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + y<x) + + ... | tri> x≮y″ x≢y y<x = + tri> + ¬x<y + (λ x≡y → x≢y (≡⇒Pointwise-≡ (≡.trans (≡.sym (VecCast.≈-reflexive ≡.refl)) (≡ports x≡y)))) + (<-ports + ≡.refl + (HL.≈-sym (HL.≈-reflexive x≡y′)) + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (≡.sym (VecCast.≈-reflexive ≡.refl))) + y<x)) + where + open IsEquivalence ≡.isEquivalence using () renaming (isPartialEquivalence to ≡-isPartialEquivalence) + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label _ x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ _ x<y) = + x≮y″ + (Lex.<-respectsˡ + ≡-isPartialEquivalence + FinProp.<-respˡ-≡ + (≡⇒Pointwise-≡ (VecCast.≈-reflexive ≡.refl)) + x<y) + ... | tri> x≮y′ x≢y y<x = tri> + ¬x<y + (λ x≡y → x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) (≡label x≡y))) + (<-label ≡.refl (<-respˡ-≈ (≡.sym (HL.≈-reflexive ≡.refl)) y<x)) + where + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label ≡a x<y) = x≮y′ (<-respˡ-≈ (HL.≈-reflexive ≡.refl) x<y) + ¬x<y (<-ports _ ≡l _) = x≢y (≡.trans (≡.sym (HL.≈-reflexive ≡.refl)) ≡l) +tri x y | tri> x≮y x≢y y<x = tri> ¬x<y (λ x≡y → x≢y (≡arity x≡y)) (<-arity y<x) + where + ¬x<y : ¬ <-Edge x y + ¬x<y (<-arity x<y) = x≮y x<y + ¬x<y (<-label ≡a x<y) = x≢y ≡a + ¬x<y (<-ports ≡a _ _) = x≢y ≡a + +isStrictTotalOrder : {v : ℕ} → IsStrictTotalOrder (≈-Edge {v}) (<-Edge {v}) +isStrictTotalOrder = record + { isStrictPartialOrder = record + { isEquivalence = ≈-Edge-IsEquivalence + ; irrefl = <-Edge-irrefl + ; trans = <-Edge-trans + ; <-resp-≈ = <-Edge-respʳ-≈ , <-Edge-respˡ-≈ + } + ; compare = tri + } + +strictTotalOrder : {v : ℕ} → StrictTotalOrder 0ℓ 0ℓ 0ℓ +strictTotalOrder {v} = record + { Carrier = Edge v + ; _≈_ = ≈-Edge {v} + ; _<_ = <-Edge {v} + ; isStrictTotalOrder = isStrictTotalOrder {v} + } + +showEdge : {v : ℕ} → Edge v → String +showEdge record { arity = a ; label = l ; ports = p} = HL.showLabel a l <+> showVec showFin p + +open module STOP′ {v} = STOP (strictTotalOrder {v}) using (decTotalOrder) public + +≈-Edge⇒≡ : {v : ℕ} {x y : Edge v} → ≈-Edge x y → x ≡ y +≈-Edge⇒≡ {v} {record { label = l ; ports = p }} record { ≡arity = ≡.refl ; ≡label = ≡.refl ; ≡ports = ≡.refl } + rewrite cast-is-id ≡.refl l + rewrite VecCast.cast-is-id ≡.refl p = ≡.refl diff --git a/Data/Hypergraph/Label.agda b/Data/Hypergraph/Label.agda new file mode 100644 index 0000000..c23d33a --- /dev/null +++ b/Data/Hypergraph/Label.agda @@ -0,0 +1,36 @@ +{-# OPTIONS --without-K --safe #-} +module Data.Hypergraph.Label where + +open import Data.Castable using (IsCastable) +open import Data.Nat.Base using (ℕ) +open import Data.String using (String) +open import Level using (Level; suc) +open import Relation.Binary using (Rel; IsDecTotalOrder) +open import Relation.Binary.Bundles using (DecTotalOrder; StrictTotalOrder) +open import Relation.Binary.Properties.DecTotalOrder using (<-strictTotalOrder; _<_) +open import Relation.Binary.PropositionalEquality using (_≡_) + +record HypergraphLabel {ℓ : Level} : Set (suc ℓ) where + + field + Label : ℕ → Set ℓ + showLabel : (n : ℕ) → Label n → String + isCastable : IsCastable Label + _[_≤_] : (n : ℕ) → Rel (Label n) ℓ + isDecTotalOrder : (n : ℕ) → IsDecTotalOrder _≡_ (n [_≤_]) + + decTotalOrder : (n : ℕ) → DecTotalOrder ℓ ℓ ℓ + decTotalOrder n = record + { Carrier = Label n + ; _≈_ = _≡_ + ; _≤_ = n [_≤_] + ; isDecTotalOrder = isDecTotalOrder n + } + + _[_<_] : (n : ℕ) → Rel (Label n) ℓ + _[_<_] n = _<_ (decTotalOrder n) + + strictTotalOrder : (n : ℕ) → StrictTotalOrder ℓ ℓ ℓ + strictTotalOrder n = <-strictTotalOrder (decTotalOrder n) + + open IsCastable isCastable public diff --git a/Data/Hypergraph/Setoid.agda b/Data/Hypergraph/Setoid.agda new file mode 100644 index 0000000..c39977d --- /dev/null +++ b/Data/Hypergraph/Setoid.agda @@ -0,0 +1,50 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) + +module Data.Hypergraph.Setoid (HL : HypergraphLabel) where + +open import Data.Hypergraph.Edge HL using (decTotalOrder) +open import Data.Hypergraph.Base HL using (Hypergraph; sortHypergraph) +open import Data.Nat.Base using (ℕ) +open import Level using (0ℓ) +open import Relation.Binary.Bundles using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) + +record ≈-Hypergraph {v : ℕ} (H H′ : Hypergraph v) : Set where + module H = Hypergraph H + module H′ = Hypergraph H′ + field + ≡sorted : sortHypergraph H ≡ sortHypergraph H′ + open Hypergraph using (edges) + ≡edges : edges (sortHypergraph H) ≡ edges (sortHypergraph H′) + ≡edges = ≡.cong edges ≡sorted + open import Data.List.Relation.Binary.Permutation.Propositional using (_↭_; ↭-reflexive; ↭-sym; ↭-trans) + open import Data.List.Sort decTotalOrder using (sort-↭) + ↭edges : H.edges ↭ H′.edges + ↭edges = ↭-trans (↭-sym (sort-↭ H.edges)) (↭-trans (↭-reflexive ≡edges) (sort-↭ H′.edges)) + +≈-refl : {v : ℕ} {H : Hypergraph v} → ≈-Hypergraph H H +≈-refl = record { ≡sorted = ≡.refl } + +≈-sym : {v : ℕ} {H H′ : Hypergraph v} → ≈-Hypergraph H H′ → ≈-Hypergraph H′ H +≈-sym ≈H = record { ≡sorted = ≡.sym ≡sorted } + where + open ≈-Hypergraph ≈H + +≈-trans : {v : ℕ} {H H′ H″ : Hypergraph v} → ≈-Hypergraph H H′ → ≈-Hypergraph H′ H″ → ≈-Hypergraph H H″ +≈-trans ≈H₁ ≈H₂ = record { ≡sorted = ≡.trans ≈H₁.≡sorted ≈H₂.≡sorted } + where + module ≈H₁ = ≈-Hypergraph ≈H₁ + module ≈H₂ = ≈-Hypergraph ≈H₂ + +Hypergraph-Setoid : (v : ℕ) → Setoid 0ℓ 0ℓ +Hypergraph-Setoid v = record + { Carrier = Hypergraph v + ; _≈_ = ≈-Hypergraph + ; isEquivalence = record + { refl = ≈-refl + ; sym = ≈-sym + ; trans = ≈-trans + } + } diff --git a/Data/Permutation.agda b/Data/Permutation.agda new file mode 100644 index 0000000..55c8748 --- /dev/null +++ b/Data/Permutation.agda @@ -0,0 +1,217 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level) + +module Data.Permutation {ℓ : Level} {A : Set ℓ} where + +import Data.Fin as Fin +import Data.Fin.Properties as FinProp +import Data.Fin.Permutation as ↔-Fin +import Data.List as List +import Data.List.Properties as ListProp +import Data.List.Relation.Binary.Permutation.Propositional as ↭-List +import Data.Nat as Nat +import Data.Vec.Functional as Vector +import Data.Vec.Functional.Properties as VectorProp +import Data.Vec.Functional.Relation.Binary.Permutation as ↭-Vec +import Data.Vec.Functional.Relation.Binary.Permutation.Properties as ↭-VecProp + +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) +open import Data.Product.Base using (_,_; proj₁; proj₂) +open import Data.Vec.Functional.Relation.Unary.Any using (Any) +open import Function.Base using (_∘_) + +open ↭-Vec using () renaming (_↭_ to _↭′_) +open ↭-List using (_↭_; ↭-sym; module PermutationReasoning) +open ↔-Fin using (Permutation; _⟨$⟩ˡ_; _⟨$⟩ʳ_) +open List using (List) hiding (module List) +open Fin using (Fin; cast) hiding (module Fin) +open Vector using (Vector; toList; fromList) +open Fin.Fin +open Nat using (ℕ; zero; suc) +open _↭_ + +module _ where + + open Fin using (#_) + open ↔-Fin using (lift₀; insert) + open ↭-VecProp using (↭-refl; ↭-trans) + + -- convert a List permutation to a Vector permutation + fromList-↭ + : {xs ys : List A} + → xs ↭ ys + → fromList xs ↭′ fromList ys + fromList-↭ refl = ↭-refl + fromList-↭ (prep _ xs↭ys) + with n↔m , xs↭ys′ ← fromList-↭ xs↭ys = lift₀ n↔m , λ where + zero → ≡.refl + (suc i) → xs↭ys′ i + fromList-↭ (swap x y xs↭ys) + with n↔m , xs↭ys′ ← fromList-↭ xs↭ys = insert (# 0) (# 1) (lift₀ n↔m) , λ where + zero → ≡.refl + (suc zero) → ≡.refl + (suc (suc i)) → xs↭ys′ i + fromList-↭ (trans {xs} xs↭ys ys↭zs) = + ↭-trans {_} {_} {_} {i = fromList xs} (fromList-↭ xs↭ys) (fromList-↭ ys↭zs) + +-- witness for an element in a Vector +_∈_ : A → {n : ℕ} → Vector A n → Set ℓ +x ∈ xs = Any (x ≡_) xs + +-- apply a permutation to a witness +apply + : {n m : ℕ} + {xs : Vector A n} + {ys : Vector A m} + {x : A} + → (xs↭ys : xs ↭′ ys) + → x ∈ xs + → x ∈ ys +apply {suc n} {zero} (↔n , _) (i , _) with () ← ↔n ⟨$⟩ˡ i +apply {suc n} {suc m} {xs} {ys} {x} (↔n , ↔≗) (i , x≡xs-i) = i′ , x≡ys-i′ + where + i′ : Fin (suc m) + i′ = ↔n ⟨$⟩ˡ i + open ≡.≡-Reasoning + x≡ys-i′ : x ≡ ys i′ + x≡ys-i′ = begin + x ≡⟨ x≡xs-i ⟩ + xs i ≡⟨ ≡.cong xs (↔-Fin.inverseʳ ↔n) ⟨ + xs (↔n ⟨$⟩ʳ (↔n ⟨$⟩ˡ i)) ≡⟨⟩ + xs (↔n ⟨$⟩ʳ i′) ≡⟨ ↔≗ i′ ⟩ + ys i′ ∎ + +-- remove an element from a Vector +remove : {n : ℕ} {x : A} (xs : Vector A (suc n)) → x ∈ xs → Vector A n +remove xs (i , _) = Vector.removeAt xs i + +-- remove an element and its image from a permutation +↭-remove + : {n m : ℕ} + {xs : Vector A (suc n)} + {ys : Vector A (suc m)} + {x : A} + → (xs↭ys : xs ↭′ ys) + → (x∈xs : x ∈ xs) + → let x∈ys = apply xs↭ys x∈xs in + remove xs x∈xs ↭′ remove ys x∈ys +↭-remove {n} {m} {xs} {ys} {x} xs↭ys@(ρ , ↔≗) x∈xs@(k , _) = ρ⁻ , ↔≗⁻ + where + k′ : Fin (suc m) + k′ = ρ ⟨$⟩ˡ k + x∈ys : x ∈ ys + x∈ys = apply xs↭ys x∈xs + ρ⁻ : Permutation m n + ρ⁻ = ↔-Fin.remove k′ ρ + xs⁻ : Vector A n + xs⁻ = remove xs x∈xs + ys⁻ : Vector A m + ys⁻ = remove ys x∈ys + open ≡.≡-Reasoning + open Fin using (punchIn) + ↔≗⁻ : (i : Fin m) → xs⁻ (ρ⁻ ⟨$⟩ʳ i) ≡ ys⁻ i + ↔≗⁻ i = begin + xs⁻ (ρ⁻ ⟨$⟩ʳ i) ≡⟨⟩ + remove xs x∈xs (ρ⁻ ⟨$⟩ʳ i) ≡⟨⟩ + xs (punchIn k (ρ⁻ ⟨$⟩ʳ i)) ≡⟨ ≡.cong xs (↔-Fin.punchIn-permute′ ρ k i) ⟨ + xs (ρ ⟨$⟩ʳ (punchIn k′ i)) ≡⟨ ↔≗ (punchIn k′ i) ⟩ + ys (punchIn k′ i) ≡⟨⟩ + remove ys x∈ys i ≡⟨⟩ + ys⁻ i ∎ + +open List.List +open List using (length; insertAt) + +-- build a permutation which moves the first element of a list to an arbitrary position +↭-insert-half + : {x₀ : A} + {xs : List A} + → (i : Fin (suc (length xs))) + → x₀ ∷ xs ↭ insertAt xs i x₀ +↭-insert-half zero = refl +↭-insert-half {x₀} {x₁ ∷ xs} (suc i) = trans (swap x₀ x₁ refl) (prep x₁ (↭-insert-half i)) + +-- add a mapping to a permutation, given a value and its start and end positions +↭-insert + : {xs ys : List A} + → xs ↭ ys + → (i : Fin (suc (length xs))) + (j : Fin (suc (length ys))) + (x : A) + → insertAt xs i x ↭ insertAt ys j x +↭-insert {xs} {ys} xs↭ys i j x = xs↭ys⁺ + where + open PermutationReasoning + xs↭ys⁺ : insertAt xs i x ↭ insertAt ys j x + xs↭ys⁺ = begin + insertAt xs i x ↭⟨ ↭-insert-half i ⟨ + x ∷ xs <⟨ xs↭ys ⟩ + x ∷ ys ↭⟨ ↭-insert-half j ⟩ + insertAt ys j x ∎ + +open ListProp using (length-tabulate; tabulate-cong) +insertAt-toList + : {n : ℕ} + {v : Vector A n} + (i : Fin (suc (length (toList v)))) + (i′ : Fin (suc n)) + → i ≡ cast (≡.cong suc (≡.sym (length-tabulate v))) i′ + → (x : A) + → insertAt (toList v) i x + ≡ toList (Vector.insertAt v i′ x) +insertAt-toList zero zero _ x = ≡.refl +insertAt-toList {suc n} {v} (suc i) (suc i′) ≡.refl x = + ≡.cong (v zero ∷_) (insertAt-toList i i′ ≡.refl x) + +-- convert a Vector permutation to a List permutation +toList-↭ + : {n m : ℕ} + {xs : Vector A n} + {ys : Vector A m} + → xs ↭′ ys + → toList xs ↭ toList ys +toList-↭ {zero} {zero} _ = refl +toList-↭ {zero} {suc m} (ρ , _) with () ← ρ ⟨$⟩ʳ zero +toList-↭ {suc n} {zero} (ρ , _) with () ← ρ ⟨$⟩ˡ zero +toList-↭ {suc n} {suc m} {xs} {ys} xs↭ys′ = xs↭ys + where + -- first element and its image + x₀ : A + x₀ = xs zero + x₀∈xs : x₀ ∈ xs + x₀∈xs = zero , ≡.refl + x₀∈ys : x₀ ∈ ys + x₀∈ys = apply xs↭ys′ x₀∈xs + -- reduce the problem by removing those elements + xs⁻ : Vector A n + xs⁻ = remove xs x₀∈xs + ys⁻ : Vector A m + ys⁻ = remove ys x₀∈ys + xs↭ys⁻ : xs⁻ ↭′ ys⁻ + xs↭ys⁻ = ↭-remove xs↭ys′ x₀∈xs + -- recursion on the reduced problem + xs↭ys⁻′ : toList xs⁻ ↭ toList ys⁻ + xs↭ys⁻′ = toList-↭ xs↭ys⁻ + -- indices for working with vectors + i : Fin (suc n) + i = proj₁ x₀∈xs + j : Fin (suc m) + j = proj₁ x₀∈ys + i′ : Fin (suc (length (toList xs⁻))) + i′ = cast (≡.sym (≡.cong suc (length-tabulate xs⁻))) i + j′ : Fin (suc (length (toList ys⁻))) + j′ = cast (≡.sym (≡.cong suc (length-tabulate ys⁻))) j + -- main construction + open VectorProp using (insertAt-removeAt) + open PermutationReasoning + open Vector using () renaming (insertAt to insertAt′) + xs↭ys : toList xs ↭ toList ys + xs↭ys = begin + toList xs ≡⟨ tabulate-cong (insertAt-removeAt xs i) ⟨ + toList (insertAt′ xs⁻ i x₀) ≡⟨ insertAt-toList i′ i ≡.refl x₀ ⟨ + insertAt (toList xs⁻) i′ x₀ ↭⟨ ↭-insert xs↭ys⁻′ i′ j′ x₀ ⟩ + insertAt (toList ys⁻) j′ x₀ ≡⟨ insertAt-toList j′ j ≡.refl x₀ ⟩ + toList (insertAt′ ys⁻ j x₀) ≡⟨ ≡.cong (toList ∘ insertAt′ ys⁻ j) (proj₂ x₀∈ys) ⟩ + toList (insertAt′ ys⁻ j (ys j)) ≡⟨ tabulate-cong (insertAt-removeAt ys j) ⟩ + toList ys ∎ diff --git a/Data/Permutation/Sort.agda b/Data/Permutation/Sort.agda new file mode 100644 index 0000000..8d097f2 --- /dev/null +++ b/Data/Permutation/Sort.agda @@ -0,0 +1,29 @@ +{-# OPTIONS --without-K --safe #-} + +open import Relation.Binary.Bundles using (DecTotalOrder) + +module Data.Permutation.Sort {ℓ₁ ℓ₂ ℓ₃} (dto : DecTotalOrder ℓ₁ ℓ₂ ℓ₃) where + +open DecTotalOrder dto using (module Eq; totalOrder) renaming (Carrier to A) + +open import Data.List.Base using (List) +open import Data.List.Relation.Binary.Equality.Setoid Eq.setoid using (_≋_) +open import Data.List.Relation.Binary.Permutation.Setoid Eq.setoid using (_↭_; module PermutationReasoning) +open import Data.List.Relation.Unary.Sorted.TotalOrder.Properties using (↗↭↗⇒≋) +open import Data.List.Sort dto using (sortingAlgorithm) +open import Data.List.Sort.Base totalOrder using (SortingAlgorithm) +open SortingAlgorithm sortingAlgorithm using (sort; sort-↭ₛ; sort-↗) + +sorted-≋ + : {xs ys : List A} + → xs ↭ ys + → sort xs ≋ sort ys +sorted-≋ {xs} {ys} xs↭ys = ↗↭↗⇒≋ totalOrder (sort-↗ xs) (sort-↗ ys) sort-xs↭sort-ys + where + open PermutationReasoning + sort-xs↭sort-ys : sort xs ↭ sort ys + sort-xs↭sort-ys = begin + sort xs ↭⟨ sort-↭ₛ xs ⟩ + xs ↭⟨ xs↭ys ⟩ + ys ↭⟨ sort-↭ₛ ys ⟨ + sort ys ∎ diff --git a/Data/SExp.agda b/Data/SExp.agda new file mode 100644 index 0000000..adf4325 --- /dev/null +++ b/Data/SExp.agda @@ -0,0 +1,75 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.SExp where + +open import Data.List using (List) +open import Data.Nat.Base using (ℕ) +open import Data.Nat.Show using () renaming (show to showNat) +open import Data.String.Base as String using (String; parens; intersperse; _<+>_) + +open List + +module ListBased where + + data SExp : Set where + Atom : String → SExp + Nat : ℕ → SExp + SExps : List SExp → SExp + + mutual + showSExp : SExp → String + showSExp (Atom s) = s + showSExp (Nat n) = showNat n + showSExp (SExps xs) = parens (intersperse " " (showList xs)) + + -- expanded out map for termination checker + showList : List SExp → List String + showList [] = [] + showList (x ∷ xs) = showSExp x ∷ showList xs + +module PairBased where + + data SExp : Set where + Atom : String → SExp + Nat : ℕ → SExp + Nil : SExp + Pair : SExp → SExp → SExp + + mutual + showSExp : SExp → String + showSExp (Atom s) = s + showSExp (Nat n) = showNat n + showSExp Nil = "()" + showSExp (Pair l r) = parens (showPair l r) + + showPair : SExp → SExp → String + showPair x (Atom s) = showSExp x <+> "." <+> s + showPair x (Nat n) = showSExp x <+> "." <+> showNat n + showPair x Nil = showSExp x + showPair x (Pair l r) = showSExp x <+> showPair l r + +open ListBased public +open PairBased + +mutual + sexpL→sexpP : ListBased.SExp → PairBased.SExp + sexpL→sexpP (Atom s) = Atom s + sexpL→sexpP (Nat n) = Nat n + sexpL→sexpP (SExps xs) = [sexpL]→sexpP xs + + [sexpL]→sexpP : List (ListBased.SExp) → PairBased.SExp + [sexpL]→sexpP [] = Nil + [sexpL]→sexpP (x ∷ xs) = Pair (sexpL→sexpP x) ([sexpL]→sexpP xs) + +mutual + sexpP→sexpL : PairBased.SExp → ListBased.SExp + sexpP→sexpL (Atom s) = Atom s + sexpP→sexpL (Nat n) = Nat n + sexpP→sexpL Nil = SExps [] + sexpP→sexpL (Pair x y) = SExps (sexpP→sexpL x ∷ sexpP→[sexpL] y) + + sexpP→[sexpL] : PairBased.SExp → List (ListBased.SExp) + sexpP→[sexpL] (Atom _) = [] + sexpP→[sexpL] (Nat _) = [] + sexpP→[sexpL] Nil = [] + sexpP→[sexpL] (Pair x y) = sexpP→sexpL x ∷ sexpP→[sexpL] y diff --git a/Data/SExp/Parser.agda b/Data/SExp/Parser.agda new file mode 100644 index 0000000..ec1b6a5 --- /dev/null +++ b/Data/SExp/Parser.agda @@ -0,0 +1,73 @@ +{-# OPTIONS --without-K --guardedness --safe #-} + +open import Text.Parser.Types.Core using (Parameters) + +module Data.SExp.Parser {l} {P : Parameters l} where + +import Data.String.Base as String +open import Data.List as List using (List) + +open import Data.Char.Base using (Char) +open import Data.List.Sized.Interface using (Sized) +open import Data.List.NonEmpty as List⁺ using (List⁺) renaming (map to map⁺) +open import Data.Subset using (Subset; into) +open import Effect.Monad using (RawMonadPlus) +open import Function.Base using (_∘_; _$_) +open import Induction.Nat.Strong using (fix; map; □_) +open import Relation.Binary.PropositionalEquality.Decidable using (DecidableEquality) +open import Relation.Unary using (IUniversal; _⇒_) +open import Level.Bounded using (theSet; [_]) +open import Text.Parser.Types P using (Parser) +open import Text.Parser.Combinators {P = P} using (_<$>_; list⁺; _<|>_; _<$_; _<&_; _<&?_; box) +open import Text.Parser.Combinators.Char {P = P} using (alpha; parens; withSpaces; spaces; char) +open import Text.Parser.Combinators.Numbers {P = P} using (decimalℕ) + +open import Data.SExp using (SExp) +open SExp + +open Parameters P using (M; Tok; Toks) + +module _ + {{𝕄 : RawMonadPlus M}} + {{𝕊 : Sized Tok Toks}} + {{𝔻 : DecidableEquality (theSet Tok)}} + {{ℂ : Subset Char (theSet Tok)}} + {{ℂ⁻ : Subset (theSet Tok) Char}} + where + + -- An atom is just a non-empty list of alphabetical characters. + -- We use `<$>` to turn that back into a string and apply the `Atom` constructor. + atom : ∀[ Parser [ SExp ] ] + atom = Atom ∘ String.fromList⁺ ∘ map⁺ (into ℂ⁻) <$> list⁺ alpha + + -- Natural number parser + nat : ∀[ Parser [ SExp ] ] + nat = Nat <$> decimalℕ + + -- Empty list parser + nil : ∀[ Parser [ SExp ] ] + nil = SExps List.[] <$ char '(' <&? box spaces <& box (char ')') + + -- Parser for a list of S-Expressions + list : ∀[ Parser [ SExp ] ⇒ Parser [ List SExp ] ] + list sexp = List⁺.toList <$> list⁺ (withSpaces sexp) + + -- Compound S-Expression parser + compound : ∀[ □ Parser [ SExp ] ⇒ Parser [ SExp ] ] + compound rec = nil <|> SExps <$> parens (map list rec) + + -- S-Expression parser + sexp : ∀[ □ Parser [ SExp ] ⇒ Parser [ SExp ] ] + sexp rec = atom <|> nat <|> compound rec + + -- Build the parser as a fixpoint since SExp is an inductive type + sexp-top : ∀[ Parser [ SExp ] ] + sexp-top = fix (Parser [ SExp ]) sexp + + -- Top-level parser for list of S-Expressions + LIST : ∀[ Parser [ SExp ] ] + LIST = SExps <$> list sexp-top + + -- Top-level S-Expression parser + SEXP : ∀[ Parser [ SExp ] ] + SEXP = withSpaces sexp-top |
