diff options
Diffstat (limited to 'Data')
| -rw-r--r-- | Data/Circuit/Merge.agda | 338 | ||||
| -rw-r--r-- | Data/Fin/Preimage.agda | 42 | ||||
| -rw-r--r-- | Data/Subset/Functional.agda | 162 | 
3 files changed, 542 insertions, 0 deletions
| diff --git a/Data/Circuit/Merge.agda b/Data/Circuit/Merge.agda new file mode 100644 index 0000000..d8180b4 --- /dev/null +++ b/Data/Circuit/Merge.agda @@ -0,0 +1,338 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Circuit.Merge where + +open import Data.Nat.Base using (ℕ) +open import Data.Fin.Base using (Fin; pinch; punchIn; punchOut) +open import Data.Fin.Properties using (punchInᵢ≢i; punchIn-punchOut) +open import Data.Bool.Properties using (if-float) +open import Data.Bool using (Bool; if_then_else_) +open import Data.Circuit.Value using (Value; join; join-comm; join-assoc) +open import Data.Subset.Functional +  using +      ( Subset +      ; ⁅_⁆ ; ⊥ ; ⁅⁆∘ρ +      ; foldl ; foldl-cong₁ ; foldl-cong₂ +      ; foldl-[] ; foldl-suc +      ; foldl-⊥ ; foldl-⁅⁆ +      ; foldl-fusion +      ) +open import Data.Vector as V using (Vector; head; tail; removeAt) +open import Data.Fin.Permutation +  using +    ( Permutation′ +    ; _⟨$⟩ˡ_ ; _⟨$⟩ʳ_ +    ; inverseˡ ; inverseʳ +    ; id +    ; flip +    ; insert ; remove +    ; punchIn-permute +    ) +open import Data.Product using (Σ-syntax; _,_) +open import Data.Fin.Preimage using (preimage; preimage-cong₁; preimage-cong₂) +open import Function.Base using (∣_⟩-_; _∘_) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) + +open Value using (U) +open ℕ +open Fin +open Bool + +_when_ : Value → Bool → Value +x when b = if b then x else U + +opaque +  merge-with : {A : ℕ} → Value → Vector Value A → Subset A → Value +  merge-with e v = foldl (∣ join ⟩- v) e + +  merge-with-cong : {A : ℕ} {v₁ v₂ : Vector Value A} (e : Value) → v₁ ≗ v₂ → merge-with e v₁ ≗ merge-with e v₂ +  merge-with-cong e v₁≗v₂ = foldl-cong₁ (λ x → ≡.cong (join x) ∘ v₁≗v₂) e + +  merge-with-cong₂ : {A : ℕ} (e : Value) (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge-with e v S₁ ≡ merge-with e v S₂ +  merge-with-cong₂ e v = foldl-cong₂ (∣ join ⟩- v) e + +  merge-with-⊥ : {A : ℕ} (e : Value) (v : Vector Value A) → merge-with e v ⊥ ≡ e +  merge-with-⊥ e v = foldl-⊥ (∣ join ⟩- v) e + +  merge-with-[] : (e : Value) (v : Vector Value 0) (S : Subset 0) → merge-with e v S ≡ e +  merge-with-[] e v = foldl-[] (∣ join ⟩- v) e + +  merge-with-suc +      : {A : ℕ} (e : Value) (v : Vector Value (suc A)) (S : Subset (suc A)) +      → merge-with e v S +      ≡ merge-with (if head S then join e (head v) else e) (tail v) (tail S) +  merge-with-suc e v = foldl-suc (∣ join ⟩- v) e + +  merge-with-join +      : {A : ℕ} +        (x y : Value) +        (v : Vector Value A) +      → merge-with (join x y) v ≗ join x ∘ merge-with y v +  merge-with-join {A} x y v S = ≡.sym (foldl-fusion (join x) fuse y S) +    where +      fuse : (acc : Value) (k : Fin A) → join x (join acc (v k)) ≡ join (join x acc) (v k) +      fuse acc k = ≡.sym (join-assoc x acc (v k)) + +  merge-with-⁅⁆ : {A : ℕ} (e : Value) (v : Vector Value A) (x : Fin A) → merge-with e v ⁅ x ⁆ ≡ join e (v x) +  merge-with-⁅⁆ e v = foldl-⁅⁆ (∣ join ⟩- v) e + +merge-with-U : {A : ℕ} (e : Value) (S : Subset A) → merge-with e (λ _ → U) S ≡ e +merge-with-U {zero} e S = merge-with-[] e (λ _ → U) S +merge-with-U {suc A} e S = begin +    merge-with e (λ _ → U) S                ≡⟨ merge-with-suc e (λ _ → U) S ⟩ +    merge-with +        (if head S then join e U else e) +        (tail (λ _ → U)) (tail S)           ≡⟨ ≡.cong (λ h → merge-with (if head S then h else e) _ _) (join-comm e U) ⟩ +    merge-with +        (if head S then e else e) +        (tail (λ _ → U)) (tail S)           ≡⟨ ≡.cong (λ h → merge-with h (λ _ → U) (tail S)) (either-way (head S)) ⟨ +    merge-with e (tail (λ _ → U)) (tail S)  ≡⟨⟩ +    merge-with e (λ _ → U) (tail S)         ≡⟨ merge-with-U e (tail S) ⟩ +    e                                       ∎ +  where +    open ≡.≡-Reasoning +    either-way : (b : Bool) → e ≡ (if b then e else e) +    either-way b = if-float (λ _ → e) b {e} {e} + +merge : {A : ℕ} → Vector Value A → Subset A → Value +merge v = merge-with U v + +merge-cong₁ : {A : ℕ} {v₁ v₂ : Vector Value A} → v₁ ≗ v₂ → merge v₁ ≗ merge v₂ +merge-cong₁ = merge-with-cong U + +merge-cong₂ : {A : ℕ} (v : Vector Value A) {S₁ S₂ : Subset A} → S₁ ≗ S₂ → merge v S₁ ≡ merge v S₂ +merge-cong₂ = merge-with-cong₂ U + +merge-⊥ : {A : ℕ} (v : Vector Value A) → merge-with U v ⊥ ≡ U +merge-⊥ = merge-with-⊥ U + +merge-[] : (v : Vector Value 0) (S : Subset 0) → merge v S ≡ U +merge-[] = merge-with-[] U + +merge-[]₂ : {v₁ v₂ : Vector Value 0} {S₁ S₂ : Subset 0} → merge v₁ S₁ ≡ merge v₂ S₂ +merge-[]₂ {v₁} {v₂} {S₁} {S₂} = ≡.trans (merge-[] v₁ S₁) (≡.sym (merge-[] v₂ S₂)) + +merge-⁅⁆ : {A : ℕ} (v : Vector Value A) (x : Fin A) → merge v ⁅ x ⁆ ≡ v x +merge-⁅⁆ = merge-with-⁅⁆ U + +join-merge : {A : ℕ} (e : Value) (v : Vector Value A) (S : Subset A) → join e (merge v S) ≡ merge-with e v S +join-merge e v S = ≡.sym (≡.trans (≡.cong (λ h → merge-with h v S) (join-comm U e)) (merge-with-join e U v S)) + +merge-suc +    : {A : ℕ} (v : Vector Value (suc A)) (S : Subset (suc A)) +    → merge v S +    ≡ merge-with (head v when head S) (tail v) (tail S) +merge-suc = merge-with-suc U + +insert-f0-0 +    : {A B : ℕ} +      (f : Fin (suc A) → Fin (suc B)) +    → Σ[ ρ ∈ Permutation′ (suc B) ] (ρ ⟨$⟩ʳ (f zero) ≡ zero) +insert-f0-0 f = insert (f zero) zero id , help +  where +    open import Data.Fin using (_≟_) +    open import Relation.Nullary.Decidable using (yes; no) +    help : insert (f zero) zero id ⟨$⟩ʳ f zero ≡ zero +    help with f zero ≟ f zero +    ... | yes _ = ≡.refl +    ... | no f0≢f0 with () ← f0≢f0 ≡.refl + +merge-removeAt +    : {A : ℕ} +      (k : Fin (suc A)) +      (v : Vector Value (suc A)) +      (S : Subset (suc A)) +    → merge v S ≡ join (v k when S k) (merge (removeAt v k) (removeAt S k)) +merge-removeAt {A} zero v S = begin +    merge-with U v S                                            ≡⟨ merge-suc v S ⟩ +    merge-with (head v when head S) (tail v) (tail S)           ≡⟨ join-merge (head v when head S) (tail v) (tail S) ⟨ +    join (head v when head S) (merge-with U (tail v) (tail S))  ∎ +  where +    open ≡.≡-Reasoning +merge-removeAt {suc A} (suc k) v S = begin +    merge-with U v S                                  ≡⟨ merge-suc v S ⟩ +    merge-with v0? (tail v) (tail S)                  ≡⟨ join-merge _ (tail v) (tail S) ⟨ +    join v0? (merge (tail v) (tail S))                ≡⟨ ≡.cong (join v0?) (merge-removeAt k (tail v) (tail S)) ⟩ +    join v0? (join vk? (merge (tail v-) (tail S-)))   ≡⟨ join-assoc (head v when head S) _ _ ⟨ +    join (join v0? vk?) (merge (tail v-) (tail S-))   ≡⟨ ≡.cong (λ h → join h (merge (tail v-) (tail S-))) (join-comm (head v- when head S-) _) ⟩ +    join (join vk? v0?) (merge (tail v-) (tail S-))   ≡⟨ join-assoc (tail v k when tail S k) _ _ ⟩ +    join vk? (join v0? (merge (tail v-) (tail S-)))   ≡⟨ ≡.cong (join vk?) (join-merge _ (tail v-) (tail S-)) ⟩ +    join vk? (merge-with v0? (tail v-) (tail S-))     ≡⟨ ≡.cong (join vk?) (merge-suc v- S-) ⟨ +    join vk? (merge v- S-)                            ∎ +  where +    v0? vk? : Value +    v0? = head v when head S +    vk? = tail v k when tail S k +    v- : Vector Value (suc A) +    v- = removeAt v (suc k) +    S- : Subset (suc A) +    S- = removeAt S (suc k) +    open ≡.≡-Reasoning + +import Function.Structures as FunctionStructures +open module FStruct {A B : Set} = FunctionStructures {_} {_} {_} {_} {A} _≡_ {B} _≡_ using (IsInverse) +open IsInverse using () renaming (inverseˡ to invˡ; inverseʳ to invʳ) + +merge-preimage-ρ +    : {A : ℕ} +    → (ρ : Permutation′ A) +    → (v : Vector Value A) +      (S : Subset A) +    → merge v (preimage (ρ ⟨$⟩ʳ_) S) ≡ merge (v ∘ (ρ ⟨$⟩ˡ_)) S +merge-preimage-ρ {zero} ρ v S = merge-[]₂ +merge-preimage-ρ {suc A} ρ v S = begin +    merge v (preimage ρʳ S)                   ≡⟨ merge-removeAt (head ρˡ) v (preimage ρʳ S) ⟩ +    join +        (head (v ∘ ρˡ) when S (ρʳ (ρˡ zero))) +        (merge v- [preimageρʳS]-)             ≡⟨ ≡.cong (λ h → join h (merge v- [preimageρʳS]-)) ≡vρˡ0? ⟩ +    join vρˡ0? (merge v- [preimageρʳS]-)      ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₂ v- preimage-) ⟩ +    join vρˡ0? (merge v- (preimage ρʳ- S-))   ≡⟨ ≡.cong (join vρˡ0?) (merge-preimage-ρ ρ- v- S-) ⟩ +    join vρˡ0? (merge (v- ∘ ρˡ-) S-)          ≡⟨ ≡.cong (join vρˡ0?) (merge-cong₁ v∘ρˡ- S-) ⟩ +    join vρˡ0? (merge (tail (v ∘ ρˡ)) S-)     ≡⟨ join-merge vρˡ0? (tail (v ∘ ρˡ)) S- ⟩ +    merge-with vρˡ0? (tail (v ∘ ρˡ)) S-       ≡⟨ merge-suc (v ∘ ρˡ) S ⟨ +    merge (v ∘ ρˡ) S                          ∎ +  where +    ρˡ ρʳ : Fin (suc A) → Fin (suc A) +    ρˡ = ρ ⟨$⟩ˡ_ +    ρʳ = ρ ⟨$⟩ʳ_ +    ρ- : Permutation′ A +    ρ- = remove (head ρˡ) ρ +    ρˡ- ρʳ- : Fin A → Fin A +    ρˡ- = ρ- ⟨$⟩ˡ_ +    ρʳ- = ρ- ⟨$⟩ʳ_ +    v- : Vector Value A +    v- = removeAt v (head ρˡ) +    [preimageρʳS]- : Subset A +    [preimageρʳS]- = removeAt (preimage ρʳ S) (head ρˡ) +    S- : Subset A +    S- = tail S +    vρˡ0? : Value +    vρˡ0? = head (v ∘ ρˡ) when head S +    open ≡.≡-Reasoning +    ≡vρˡ0?  : head (v ∘ ρˡ) when S (ρʳ (head ρˡ)) ≡ head (v ∘ ρˡ) when head S +    ≡vρˡ0? = ≡.cong ((head (v ∘ ρˡ) when_) ∘ S) (inverseʳ ρ) +    v∘ρˡ- : v- ∘ ρˡ- ≗ tail (v ∘ ρˡ) +    v∘ρˡ- x = begin +        v- (ρˡ- x)                                        ≡⟨⟩ +        v (punchIn (head ρˡ) (punchOut {A} {head ρˡ} _))  ≡⟨ ≡.cong v (punchIn-punchOut _) ⟩ +        v (ρˡ (punchIn (ρʳ (ρˡ zero)) x))                 ≡⟨ ≡.cong (λ h → v (ρˡ (punchIn h x))) (inverseʳ ρ) ⟩ +        v (ρˡ (punchIn zero x))                           ≡⟨⟩ +        v (ρˡ (suc x))                                    ≡⟨⟩ +        tail (v ∘ ρˡ) x                                   ∎ +    preimage- : [preimageρʳS]- ≗ preimage ρʳ- S- +    preimage- x = begin +        [preimageρʳS]- x                      ≡⟨⟩ +        removeAt (preimage ρʳ S) (head ρˡ) x  ≡⟨⟩ +        S (ρʳ (punchIn (head ρˡ) x))          ≡⟨ ≡.cong S (punchIn-permute ρ (head ρˡ) x) ⟩  +        S (punchIn (ρʳ (head ρˡ)) (ρʳ- x))    ≡⟨⟩ +        S (punchIn (ρʳ (ρˡ zero)) (ρʳ- x))    ≡⟨ ≡.cong (λ h → S (punchIn h (ρʳ- x))) (inverseʳ ρ) ⟩  +        S (punchIn zero (ρʳ- x))              ≡⟨⟩  +        S (suc (ρʳ- x))                       ≡⟨⟩ +        preimage ρʳ- S- x                     ∎ + +push-with : {A B : ℕ} → (e : Value) → Vector Value A → (Fin A → Fin B) → Vector Value B +push-with e v f = merge-with e v ∘ preimage f ∘ ⁅_⁆ + +push : {A B : ℕ} → Vector Value A → (Fin A → Fin B) → Vector Value B +push = push-with U + +mutual +  merge-preimage +      : {A B : ℕ} +        (f : Fin A → Fin B) +      → (v : Vector Value A) +        (S : Subset B) +      → merge v (preimage f S) ≡ merge (push v f) S +  merge-preimage {zero} {zero} f v S = merge-[]₂ +  merge-preimage {zero} {suc B} f v S = begin +      merge v (preimage f S)  ≡⟨ merge-[] v (preimage f S) ⟩ +      U                       ≡⟨ merge-with-U U S ⟨ +      merge (λ _ → U) S       ≡⟨ merge-cong₁ (λ x → ≡.sym (merge-[] v (⁅ x ⁆ ∘ f))) S ⟩ +      merge (push v f) S      ∎ +    where +      open ≡.≡-Reasoning +  merge-preimage {suc A} {zero} f v S with () ← f zero +  merge-preimage {suc A} {suc B} f v S with insert-f0-0 f +  ... | ρ , ρf0≡0 = begin +          merge v (preimage f S)                                    ≡⟨ merge-cong₂ v (preimage-cong₁ (λ x → inverseˡ ρ {f x}) S) ⟨ +          merge v (preimage (ρˡ ∘ ρʳ ∘ f) S)                        ≡⟨⟩ +          merge v (preimage (ρʳ ∘ f) (preimage ρˡ S))               ≡⟨ merge-preimage-f0≡0 (ρʳ ∘ f) ρf0≡0 v (preimage ρˡ S) ⟩ +          merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) (preimage ρˡ S) ≡⟨ merge-preimage-ρ (flip ρ) (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆) S ⟩ +          merge (merge v ∘ preimage (ρʳ ∘ f) ∘ ⁅_⁆ ∘ ρʳ) S          ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₂ (ρʳ ∘ f) ∘ ⁅⁆∘ρ ρ) S ⟩ +          merge (merge v ∘ preimage (ρʳ ∘ f) ∘ preimage ρˡ ∘ ⁅_⁆) S ≡⟨⟩ +          merge (merge v ∘ preimage (ρˡ ∘ ρʳ ∘ f) ∘ ⁅_⁆) S          ≡⟨ merge-cong₁ (merge-cong₂ v ∘ preimage-cong₁ (λ y → inverseˡ ρ {f y}) ∘ ⁅_⁆) S ⟩ +          merge (merge v ∘ preimage f ∘ ⁅_⁆) S                      ∎ +        where +          open ≡.≡-Reasoning +          ρʳ ρˡ : Fin (ℕ.suc B) → Fin (ℕ.suc B) +          ρʳ = ρ ⟨$⟩ʳ_ +          ρˡ = ρ ⟨$⟩ˡ_ + +  merge-preimage-f0≡0 +      : {A B : ℕ} +        (f : Fin (ℕ.suc A) → Fin (ℕ.suc B)) +      → f Fin.zero ≡ Fin.zero +      → (v : Vector Value (ℕ.suc A)) +        (S : Subset (ℕ.suc B)) +      → merge v (preimage f S) ≡ merge (merge v ∘ preimage f ∘ ⁅_⁆) S +  merge-preimage-f0≡0 {A} {B} f f0≡0 v S +    using S0 , S- ← head S , tail S +    using v0 , v- ← head v , tail v +    using _  , f- ← head f , tail f +      = begin +            merge v f⁻¹[S]                      ≡⟨ merge-suc v f⁻¹[S] ⟩ +            merge-with v0? v- f⁻¹[S]-           ≡⟨ join-merge v0? v- f⁻¹[S]- ⟨ +            join v0? (merge v- f⁻¹[S]-)         ≡⟨ ≡.cong (join v0?) (merge-preimage f- v- S) ⟩ +            join v0? (merge f[v-] S)            ≡⟨ join-merge v0? f[v-] S ⟩ +            merge-with v0? f[v-] S              ≡⟨ merge-with-suc v0? f[v-] S ⟩ +            merge-with v0?+[f[v-]0?] f[v-]- S-  ≡⟨ ≡.cong (λ h → merge-with h f[v-]- S-) ≡f[v]0 ⟩ +            merge-with f[v]0? f[v-]- S-         ≡⟨ merge-with-cong f[v]0? ≡f[v]- S- ⟩ +            merge-with f[v]0? f[v]- S-          ≡⟨ merge-suc f[v] S ⟨ +            merge f[v] S                        ∎ +          where +            f⁻¹[S] : Subset (suc A) +            f⁻¹[S] = preimage f S +            f⁻¹[S]- : Subset A +            f⁻¹[S]- = tail f⁻¹[S] +            f⁻¹[S]0 : Bool +            f⁻¹[S]0 = head f⁻¹[S] +            f[v] : Vector Value (suc B) +            f[v] = push v f +            f[v]- : Vector Value B +            f[v]- = tail f[v] +            f[v]0 : Value +            f[v]0 = head f[v] +            f[v-] : Vector Value (suc B) +            f[v-] = push v- f- +            f[v-]- : Vector Value B +            f[v-]- = tail f[v-] +            f[v-]0 : Value +            f[v-]0 = head f[v-] +            f⁻¹⁅0⁆ : Subset (suc A) +            f⁻¹⁅0⁆ = preimage f ⁅ zero ⁆ +            f⁻¹⁅0⁆- : Subset A +            f⁻¹⁅0⁆- = tail f⁻¹⁅0⁆ +            v0? v0?+[f[v-]0?] f[v]0? : Value +            v0? = v0 when f⁻¹[S]0 +            v0?+[f[v-]0?] = (if S0 then join v0? f[v-]0 else v0?) +            f[v]0? = f[v]0 when S0 +            open ≡.≡-Reasoning +            ≡f[v]0 : v0?+[f[v-]0?] ≡ f[v]0? +            ≡f[v]0 rewrite f0≡0 with S0 +            ... | true = begin +                      join v0 (merge v- f⁻¹⁅0⁆-)  ≡⟨ join-merge v0 v- (tail (preimage f ⁅ zero ⁆)) ⟩ +                      merge-with v0 v- f⁻¹⁅0⁆-    ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ zero ⁆ h) v- f⁻¹⁅0⁆-) f0≡0 ⟨ +                      merge-with v0?′ v- f⁻¹⁅0⁆-  ≡⟨ merge-suc v (preimage f ⁅ zero ⁆) ⟨ +                      merge v f⁻¹⁅0⁆              ∎ +                    where +                      v0?′ : Value +                      v0?′ = v0 when head f⁻¹⁅0⁆ +            ... | false = ≡.refl +            ≡f[v]- : f[v-]- ≗ f[v]- +            ≡f[v]- x = begin +                push v- f- (suc x)            ≡⟨ ≡.cong (λ h → merge-with (v0 when ⁅ suc x ⁆ h) v- (preimage f- ⁅ suc x ⁆)) f0≡0 ⟨ +                push-with v0?′ v- f- (suc x)  ≡⟨ merge-suc v (preimage f ⁅ suc x ⁆) ⟨ +                push v f (suc x)              ∎ +              where +                v0?′ : Value +                v0?′ = v0 when head (preimage f ⁅ suc x ⁆) diff --git a/Data/Fin/Preimage.agda b/Data/Fin/Preimage.agda new file mode 100644 index 0000000..f6e4373 --- /dev/null +++ b/Data/Fin/Preimage.agda @@ -0,0 +1,42 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Fin.Preimage where + +open import Data.Nat.Base using (ℕ) +open import Data.Fin.Base using (Fin) +open import Function.Base using (∣_⟩-_; _∘_) +open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) +open import Data.Subset.Functional using (Subset; foldl; _∪_; ⊥; ⁅_⁆) + +private +  variable A B C : ℕ + +preimage : (Fin A → Fin B) → Subset B → Subset A +preimage f Y = Y ∘ f + +⋃ : Subset A → (Fin A → Subset B) → Subset B +⋃ S f = foldl (∣ _∪_ ⟩- f) ⊥ S + +image : (Fin A → Fin B) → Subset A → Subset B +image f X = ⋃ X (⁅_⁆ ∘ f) + +preimage-cong₁ +    : {f g : Fin A → Fin B} +    → f ≗ g +    → (S : Subset B) +    → preimage f S ≗ preimage g S +preimage-cong₁ f≗g S x = ≡.cong S (f≗g x) + +preimage-cong₂ +    : (f : Fin A → Fin B) +      {S₁ S₂ : Subset B} +    → S₁ ≗ S₂ +    → preimage f S₁ ≗ preimage f S₂ +preimage-cong₂ f S₁≗S₂ = S₁≗S₂ ∘ f + +preimage-∘ +    : (f : Fin A → Fin B) +      (g : Fin B → Fin C) +      (z : Fin C) +    → preimage (g ∘ f) ⁅ z ⁆ ≗ preimage f (preimage g ⁅ z ⁆) +preimage-∘ f g S x = ≡.refl diff --git a/Data/Subset/Functional.agda b/Data/Subset/Functional.agda new file mode 100644 index 0000000..33a6d8e --- /dev/null +++ b/Data/Subset/Functional.agda @@ -0,0 +1,162 @@ +{-# OPTIONS --without-K --safe #-} + +module Data.Subset.Functional where + +open import Data.Bool.Base using (Bool; _∨_; _∧_; if_then_else_) +open import Data.Bool.Properties using (if-float) +open import Data.Fin.Base using (Fin) +open import Data.Fin.Permutation using (Permutation′; _⟨$⟩ʳ_; _⟨$⟩ˡ_; inverseˡ; inverseʳ) +open import Data.Fin.Properties using (suc-injective; 0≢1+n) +open import Data.Nat.Base using (ℕ) +open import Function.Base using (∣_⟩-_; _∘_) +open import Function.Definitions using (Injective) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; _≢_) +open import Data.Vector as V using (Vector; head; tail) + +open Bool +open Fin +open ℕ + +Subset : ℕ → Set +Subset = Vector Bool + +private +  variable n A : ℕ +  variable B C : Set + +⊥ : Subset n +⊥ _ = false + +_∪_ : Subset n → Subset n → Subset n +(A ∪ B) k = A k ∨ B k + +_∩_ : Subset n → Subset n → Subset n +(A ∩ B) k = A k ∧ B k + +⁅_⁆ : Fin n → Subset n +⁅_⁆ zero zero = true +⁅_⁆ zero (suc _) = false +⁅_⁆ (suc k) zero = false +⁅_⁆ (suc k) (suc i) = ⁅ k ⁆ i + +⁅⁆-refl : (k : Fin n) → ⁅ k ⁆ k ≡ true +⁅⁆-refl zero = ≡.refl +⁅⁆-refl (suc k) = ⁅⁆-refl k + +⁅x⁆y≡true +    : (x y : Fin n) +    → .(⁅ x ⁆ y ≡ true) +    → x ≡ y +⁅x⁆y≡true zero zero prf = ≡.refl +⁅x⁆y≡true (suc x) (suc y) prf = ≡.cong suc (⁅x⁆y≡true x y prf) + +⁅x⁆y≡false +    : (x y : Fin n) +    → .(⁅ x ⁆ y ≡ false) +    → x ≢ y +⁅x⁆y≡false zero (suc y) prf = 0≢1+n +⁅x⁆y≡false (suc x) zero prf = 0≢1+n ∘ ≡.sym +⁅x⁆y≡false (suc x) (suc y) prf = ⁅x⁆y≡false x y prf ∘ suc-injective + +f-⁅⁆ +    : {n m : ℕ} +      (f : Fin n → Fin m) +    → Injective _≡_ _≡_ f +    → (x y : Fin n) +    → ⁅ x ⁆ y ≡ ⁅ f x ⁆ (f y) +f-⁅⁆ f f-inj zero zero = ≡.sym (⁅⁆-refl (f zero)) +f-⁅⁆ f f-inj zero (suc y) with ⁅ f zero ⁆ (f (suc y)) in eq +... | true with () ← f-inj (⁅x⁆y≡true (f zero) (f (suc y)) eq) +... | false = ≡.refl +f-⁅⁆ f f-inj (suc x) zero with ⁅ f (suc x) ⁆ (f zero) in eq +... | true with () ← f-inj (⁅x⁆y≡true (f (suc x)) (f zero) eq) +... | false = ≡.refl +f-⁅⁆ f f-inj (suc x) (suc y) = f-⁅⁆ (f ∘ suc) (suc-injective ∘ f-inj) x y + +⁅⁆∘ρ +    : (ρ : Permutation′ (suc n)) +      (x : Fin (suc n)) +    → ⁅ ρ ⟨$⟩ʳ x ⁆ ≗ ⁅ x ⁆ ∘ (ρ ⟨$⟩ˡ_) +⁅⁆∘ρ {n} ρ x y = begin +    ⁅ ρ ⟨$⟩ʳ x ⁆ y                    ≡⟨ f-⁅⁆ (ρ ⟨$⟩ˡ_) ρˡ-inj (ρ ⟨$⟩ʳ x) y ⟩ +    ⁅ ρ ⟨$⟩ˡ (ρ ⟨$⟩ʳ x) ⁆ (ρ ⟨$⟩ˡ y)  ≡⟨ ≡.cong (λ h → ⁅ h ⁆ (ρ ⟨$⟩ˡ y)) (inverseˡ ρ) ⟩ +    ⁅ x ⁆ (ρ ⟨$⟩ˡ y)                  ∎ +  where +    open ≡.≡-Reasoning +    ρˡ-inj : {x y : Fin (suc n)} → ρ ⟨$⟩ˡ x ≡ ρ ⟨$⟩ˡ y → x ≡ y +    ρˡ-inj {x} {y} ρˡx≡ρˡy = begin +        x                 ≡⟨ inverseʳ ρ ⟨ +        ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ x) ≡⟨ ≡.cong (ρ ⟨$⟩ʳ_) ρˡx≡ρˡy ⟩ +        ρ ⟨$⟩ʳ (ρ ⟨$⟩ˡ y) ≡⟨ inverseʳ ρ ⟩ +        y                 ∎ + +opaque +  -- TODO dependent fold +  foldl : (B → Fin A → B) → B → Subset A → B +  foldl {B = B} f = V.foldl (λ _ → B) (λ { {k} acc b → if b then f acc k else acc }) + +  foldl-cong₁ +      : {f g : B → Fin A → B} +      → (∀ x y → f x y ≡ g x y) +      → (e : B) +      → (S : Subset A) +      → foldl f e S ≡ foldl g e S +  foldl-cong₁ {B = B} f≗g e S = V.foldl-cong (λ _ → B) (λ { {k} x y → ≡.cong (if y then_else x) (f≗g x k) }) e S + +  foldl-cong₂ +      : (f : B → Fin A → B) +        (e : B) +        {S₁ S₂ : Subset A} +      → (S₁ ≗ S₂) +      → foldl f e S₁ ≡ foldl f e S₂ +  foldl-cong₂ {B = B} f e S₁≗S₂ = V.foldl-cong-arg (λ _ → B) (λ {n} acc b → if b then f acc n else acc) e S₁≗S₂ + +  foldl-suc +      : (f : B → Fin (suc A) → B) +      → (e : B) +      → (S : Subset (suc A)) +      → foldl f e S ≡ foldl (∣ f ⟩- suc) (if head S then f e zero else e) (tail S) +  foldl-suc f e S = ≡.refl + +  foldl-⊥ +      : {A : ℕ} +        {B : Set} +        (f : B → Fin A → B) +        (e : B) +      → foldl f e ⊥ ≡ e +  foldl-⊥ {zero} _ _ = ≡.refl +  foldl-⊥ {suc A} f e = foldl-⊥ (∣ f ⟩- suc) e + +  foldl-⁅⁆ +      : (f : B → Fin A → B) +        (e : B) +        (k : Fin A) +      → foldl f e ⁅ k ⁆ ≡ f e k +  foldl-⁅⁆ f e zero = foldl-⊥ f (f e zero) +  foldl-⁅⁆ f e (suc k) = foldl-⁅⁆ (∣ f ⟩- suc) e k + +  foldl-fusion +      : (h : C → B) +        {f : C → Fin A → C} +        {g : B → Fin A → B} +      → (∀ x n → h (f x n) ≡ g (h x) n) +      → (e : C) +      → h ∘ foldl f e ≗ foldl g (h e) +  foldl-fusion {C = C} {A = A} h {f} {g} fuse e = V.foldl-fusion h ≡.refl fuse′ +    where +      open ≡.≡-Reasoning +      fuse′ +          : {k : Fin A} +            (acc : C) +            (b : Bool) +          → h (if b then f acc k else acc) ≡ (if b then g (h acc) k else h acc) +      fuse′ {k} acc b = begin +          h (if b then f acc k else acc)      ≡⟨ if-float h b ⟩ +          (if b then h (f acc k) else h acc)  ≡⟨ ≡.cong (if b then_else h acc) (fuse acc k) ⟩ +          (if b then g (h acc) k else h acc)  ∎ + +Subset0≗⊥ : (S : Subset 0) → S ≗ ⊥ +Subset0≗⊥ S () + +foldl-[] : (f : B → Fin 0 → B) (e : B) (S : Subset 0) → foldl f e S ≡ e +foldl-[] f e S = ≡.trans (foldl-cong₂ f e (Subset0≗⊥ S)) (foldl-⊥ f e) | 
