diff options
Diffstat (limited to 'DecorationFunctor/Trivial.agda')
-rw-r--r-- | DecorationFunctor/Trivial.agda | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/DecorationFunctor/Trivial.agda b/DecorationFunctor/Trivial.agda new file mode 100644 index 0000000..dee7c2e --- /dev/null +++ b/DecorationFunctor/Trivial.agda @@ -0,0 +1,87 @@ +{-# OPTIONS --without-K --safe #-} + +module DecorationFunctor.Trivial where + +import Categories.Morphism as Morphism + +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cocartesian using (Cocartesian; module BinaryCoproducts) +open import Categories.Category.Core using (Category) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Category.Instance.SingletonSet using (SingletonSetoid) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using () renaming (_∘F_ to _∘_) +open import Categories.Functor.Core using (Functor) +open import Categories.Functor.Monoidal.Symmetric using (module Lax) +open import Categories.NaturalTransformation using (NaturalTransformation) +open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) +open import Category.Instance.Setoids.SymmetricMonoidal using (Setoids-×) +open import Category.Instance.Nat.FinitelyCocomplete using (Nat-FinitelyCocomplete) +open import Data.Nat using (ℕ) +open import Data.Product.Base using (_,_) +open import Data.Unit using (tt) +open import Data.Unit.Properties using () renaming (≡-setoid to ⊤-setoid) +open import Function.Base using (const) +open import Function.Bundles using (Func) +open import Level using (0ℓ; suc; lift) +open import Relation.Binary.Bundles using (Setoid) +open import Relation.Binary.PropositionalEquality.Core using (refl) + +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) +open Cocartesian Nat-Cocartesian using (coproducts) +open FinitelyCocompleteCategory Nat-FinitelyCocomplete + using () + renaming (symmetricMonoidalCategory to Nat-smc) +open Morphism (Setoids 0ℓ 0ℓ) using (_≅_) +open Lax using (SymmetricMonoidalFunctor) + +open BinaryProducts products using (-×-) +open BinaryCoproducts coproducts using (-+-) + + +F : Functor Nat (Setoids 0ℓ 0ℓ) +F = record + { F₀ = const (⊤-setoid) + ; F₁ = const (record { to = const tt ; cong = const refl }) + ; identity = const refl + ; homomorphism = const refl + ; F-resp-≈ = const (const refl) + } + +ε : Func (SingletonSetoid {0ℓ} {0ℓ}) ⊤-setoid +ε = record + { to = const tt + ; cong = const refl + } + +⊗-homomorphism : NaturalTransformation (-×- ∘ (F ⁂ F)) (F ∘ -+-) +⊗-homomorphism = record + { η = const (record { to = const tt ; cong = const refl }) + ; commute = const (const refl) + ; sym-commute = const (const refl) + } + +trivial : SymmetricMonoidalFunctor Nat-smc (Setoids-× {0ℓ}) +trivial = record + { F = F + ; isBraidedMonoidal = record + { isMonoidal = record + { ε = ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = const refl + ; unitaryˡ = const refl + ; unitaryʳ = const refl + } + ; braiding-compat = const refl + } + } + +and-gate : Func (SingletonSetoid {0ℓ} {0ℓ}) ⊤-setoid +and-gate = record + { to = const tt + ; cong = const refl + } |