diff options
Diffstat (limited to 'Functor/Free/Instance/Monoid.agda')
| -rw-r--r-- | Functor/Free/Instance/Monoid.agda | 116 |
1 files changed, 116 insertions, 0 deletions
diff --git a/Functor/Free/Instance/Monoid.agda b/Functor/Free/Instance/Monoid.agda new file mode 100644 index 0000000..c8450b9 --- /dev/null +++ b/Functor/Free/Instance/Monoid.agda @@ -0,0 +1,116 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; _⊔_; suc) + +module Functor.Free.Instance.Monoid {c ℓ : Level} where + +import Categories.Object.Monoid as MonoidObject + +open import Categories.Category using (Category) +open import Categories.Category.Construction.Monoids using (Monoids) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Functor using (Functor) +open import Categories.NaturalTransformation using (NaturalTransformation) +open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×; ×-monoidal′) +open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ) +open import Data.Opaque.List using ([]ₛ; Listₛ; ++ₛ; mapₛ) +open import Data.Product using (_,_) +open import Data.Setoid using (∣_∣) +open import Function using (_⟶ₛ_; _⟨$⟩_) +open import Functor.Instance.List {c} {ℓ} using (List) +open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[]) +open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) + +module ++ = NaturalTransformation ++ +module ⊤⇒[] = NaturalTransformation ⊤⇒[] + +open Functor +open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) + +open IsMonoid + +-- the functor sending a setoid A to the monoid List A + +module _ (X : Setoid c ℓ) where + + open Setoid (List.₀ X) + + opaque + + unfolding []ₛ + + ++ₛ-assoc + : (x y z : ∣ Listₛ X ∣) + → ++ₛ ⟨$⟩ (++ₛ ⟨$⟩ (x , y) , z) + ≈ ++ₛ ⟨$⟩ (x , ++ₛ ⟨$⟩ (y , z)) + ++ₛ-assoc x y z = reflexive (++-assoc x y z) + + ++ₛ-identityˡ + : (x : ∣ Listₛ X ∣) + → x ≈ ++ₛ ⟨$⟩ ([]ₛ ⟨$⟩ _ , x) + ++ₛ-identityˡ x = reflexive (++-identityˡ x) + + ++ₛ-identityʳ + : (x : ∣ Listₛ X ∣) + → x ≈ ++ₛ ⟨$⟩ (x , []ₛ ⟨$⟩ _) + ++ₛ-identityʳ x = sym (reflexive (++-identityʳ x)) + + opaque + + unfolding ×-monoidal′ + + ListMonoid : IsMonoid (List.₀ X) + ListMonoid = record + { μ = ++.η X + ; η = ⊤⇒[].η X + ; assoc = λ { {(x , y) , z} → ++ₛ-assoc x y z } + ; identityˡ = λ { {_ , x} → ++ₛ-identityˡ x } + ; identityʳ = λ { {x , _} → ++ₛ-identityʳ x } + } + +Listₘ : Setoid c ℓ → Monoid +Listₘ X = record { isMonoid = ListMonoid X } + +opaque + + unfolding ListMonoid + + mapₘ + : {Aₛ Bₛ : Setoid c ℓ} + (f : Aₛ ⟶ₛ Bₛ) + → Monoid⇒ (Listₘ Aₛ) (Listₘ Bₛ) + mapₘ f = record + { arr = List.₁ f + ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y} + ; preserves-η = ⊤⇒[].sym-commute f + } + +module U = Category Setoids-×.U +open Monoid⇒ using (arr) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Composition using () renaming (function to compose) +opaque + unfolding mapₘ + Free-identity : {X : Setoid c ℓ} → arr (mapₘ (Id X)) U.≈ U.id + Free-identity = List.identity + + Free-homomorphism : {X Y Z : Setoid c ℓ} {f : X ⟶ₛ Y} {g : Y ⟶ₛ Z} → arr (mapₘ (compose f g)) U.≈ arr (mapₘ g) U.∘ arr (mapₘ f) + Free-homomorphism = List.homomorphism + + Free-resp-≈ + : {X Y : Setoid c ℓ} + {f g : X ⟶ₛ Y} + (let module Y = Setoid Y) + → (∀ {x} → f ⟨$⟩ x Y.≈ g ⟨$⟩ x) + → arr (mapₘ f) U.≈ arr (mapₘ g) + Free-resp-≈ = List.F-resp-≈ + +Free : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal) +Free .F₀ = Listₘ +Free .F₁ = mapₘ +Free .identity = Free-identity +Free .homomorphism = Free-homomorphism +Free .F-resp-≈ = Free-resp-≈ |
