diff options
Diffstat (limited to 'Functor/Free/Instance/MonoidalPreorder')
| -rw-r--r-- | Functor/Free/Instance/MonoidalPreorder/Lax.agda | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/Functor/Free/Instance/MonoidalPreorder/Lax.agda b/Functor/Free/Instance/MonoidalPreorder/Lax.agda new file mode 100644 index 0000000..be4e835 --- /dev/null +++ b/Functor/Free/Instance/MonoidalPreorder/Lax.agda @@ -0,0 +1,76 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Free.Instance.MonoidalPreorder.Lax where + +import Categories.Category.Monoidal.Utilities as ⊗-Util + +open import Categories.Category using (Category) +open import Categories.Category.Instance.Monoidals using (Monoidals) +open import Categories.Category.Monoidal using (MonoidalCategory) +open import Categories.Functor using (Functor) +open import Categories.Functor.Monoidal using (MonoidalFunctor) +open import Categories.Functor.Monoidal.Properties using (∘-Monoidal) +open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Lax) +open import Category.Instance.Preorder.Primitive.Monoidals.Lax using (_≃_; module ≃) renaming (Monoidals to Monoidalsₚ) +open import Data.Product using (_,_) +open import Level using (Level) +open import Preorder.Primitive.Monoidal using (MonoidalPreorder) +open import Preorder.Primitive.MonotoneMap.Monoidal.Lax using (MonoidalMonotone) + +open Lax using (MonoidalNaturalIsomorphism) + +-- The free monoidal preorder of a monoidal category + +import Functor.Free.Instance.Preorder as Preorder + +module _ {o ℓ e : Level} where + + monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ + monoidalPreorder C = record + { U = Preorder.Free.₀ U + ; monoidal = record + { unit = unit + ; tensor = Preorder.Free.₁ ⊗ + ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism + ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism + ; associative = λ x y z → record + { from = associator.from {x} {y} {z} + ; to = associator.to {x} {y} {z} + } + } + } + where + open MonoidalCategory C + open ⊗-Util monoidal + + module _ {A B : MonoidalCategory o ℓ e} where + + monoidalMonotone : MonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B) + monoidalMonotone F = record + { F = Preorder.Free.₁ F.F + ; ε = F.ε + ; ⊗-homo = λ p₁ p₂ → F.⊗-homo.η (p₁ , p₂) + } + where + module F = MonoidalFunctor F + + open MonoidalNaturalIsomorphism using (U) + + pointwiseIsomorphism + : {F G : MonoidalFunctor A B} + → MonoidalNaturalIsomorphism F G + → monoidalMonotone F ≃ monoidalMonotone G + pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G) + +Free : {o ℓ e : Level} → Functor (Monoidals o ℓ e) (Monoidalsₚ o ℓ) +Free = record + { F₀ = monoidalPreorder + ; F₁ = monoidalMonotone + ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id} + ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-Monoidal h f)} + ; F-resp-≈ = pointwiseIsomorphism + } + where + open Category (Monoidalsₚ _ _) using (id) + +module Free {o ℓ e} = Functor (Free {o} {ℓ} {e}) |
