diff options
Diffstat (limited to 'Functor/Free/Instance/SymmetricMonoidalPreorder')
| -rw-r--r-- | Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda | 4 | ||||
| -rw-r--r-- | Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda | 68 |
2 files changed, 70 insertions, 2 deletions
diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda index 8bf567d..ebb3dc0 100644 --- a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda +++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda @@ -5,7 +5,7 @@ module Functor.Free.Instance.SymmetricMonoidalPreorder.Lax where import Functor.Free.Instance.MonoidalPreorder.Lax as MP open import Categories.Category using (Category) -open import Category.Instance.SymMonCat using (SymMonCat) +open import Category.Instance.SymMonCat using (module Lax) open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) open import Categories.Functor using (Functor) open import Categories.Functor.Monoidal.Symmetric using () renaming (module Lax to Lax₁) @@ -54,7 +54,7 @@ module _ {o ℓ e : Level} where → symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋ -Free : {o ℓ e : Level} → Functor (SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ) +Free : {o ℓ e : Level} → Functor (Lax.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ) Free = record { F₀ = symmetricMonoidalPreorder ; F₁ = symmetricMonoidalMonotone diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda new file mode 100644 index 0000000..f759f17 --- /dev/null +++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda @@ -0,0 +1,68 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Free.Instance.SymmetricMonoidalPreorder.Strong where + +import Functor.Free.Instance.MonoidalPreorder.Strong as MP + +open import Categories.Category using (Category) +open import Category.Instance.SymMonCat using (module Strong) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Functor using (Functor) +open import Categories.Functor.Monoidal.Symmetric using () renaming (module Strong to Strong₁) +open import Categories.Functor.Monoidal.Symmetric.Properties using (∘-StrongSymmetricMonoidal) +open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using () renaming (module Strong to Strong₂) +open import Category.Instance.Preorder.Primitive.Monoidals.Symmetric.Strong using (SymMonPre; _≃_; module ≃) +open import Data.Product using (_,_) +open import Level using (Level) +open import Preorder.Primitive.Monoidal using (MonoidalPreorder; SymmetricMonoidalPreorder) +open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (SymmetricMonoidalMonotone) + +open Strong₁ using (SymmetricMonoidalFunctor) +open Strong₂ using (SymmetricMonoidalNaturalIsomorphism) + +-- The free symmetric monoidal preorder of a symmetric monoidal category + +module _ {o ℓ e : Level} where + + symmetricMonoidalPreorder : SymmetricMonoidalCategory o ℓ e → SymmetricMonoidalPreorder o ℓ + symmetricMonoidalPreorder C = record + { M + ; symmetric = record + { symmetric = λ x y → braiding.⇒.η (x , y) + } + } + where + open SymmetricMonoidalCategory C + module M = MonoidalPreorder (MP.Free.₀ monoidalCategory) + + module _ {A B : SymmetricMonoidalCategory o ℓ e} where + + symmetricMonoidalMonotone + : SymmetricMonoidalFunctor A B + → SymmetricMonoidalMonotone (symmetricMonoidalPreorder A) (symmetricMonoidalPreorder B) + symmetricMonoidalMonotone F = record + { monoidalMonotone = MP.Free.₁ F.monoidalFunctor + } + where + module F = SymmetricMonoidalFunctor F + + open SymmetricMonoidalNaturalIsomorphism using (⌊_⌋) + + pointwiseIsomorphism + : {F G : SymmetricMonoidalFunctor A B} + → SymmetricMonoidalNaturalIsomorphism F G + → symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G + pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋ + +Free : {o ℓ e : Level} → Functor (Strong.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ) +Free = record + { F₀ = symmetricMonoidalPreorder + ; F₁ = symmetricMonoidalMonotone + ; identity = λ {A} → ≃.refl {A = symmetricMonoidalPreorder A} {x = id} + ; homomorphism = λ {f = f} {h} → ≃.refl {x = symmetricMonoidalMonotone (∘-StrongSymmetricMonoidal h f)} + ; F-resp-≈ = pointwiseIsomorphism + } + where + open Category (SymMonPre _ _) using (id) + +module Free {o ℓ e} = Functor (Free {o} {ℓ} {e}) |
