aboutsummaryrefslogtreecommitdiff
path: root/Functor/Free/Instance
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Free/Instance')
-rw-r--r--Functor/Free/Instance/MonoidalPreorder/Strong.agda77
-rw-r--r--Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda4
-rw-r--r--Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda68
3 files changed, 147 insertions, 2 deletions
diff --git a/Functor/Free/Instance/MonoidalPreorder/Strong.agda b/Functor/Free/Instance/MonoidalPreorder/Strong.agda
new file mode 100644
index 0000000..612e91c
--- /dev/null
+++ b/Functor/Free/Instance/MonoidalPreorder/Strong.agda
@@ -0,0 +1,77 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.MonoidalPreorder.Strong where
+
+import Categories.Category.Monoidal.Utilities as ⊗-Util
+import Functor.Free.Instance.Preorder as Preorder
+
+open import Categories.Category using (Category)
+open import Categories.Category.Instance.Monoidals using (StrongMonoidals)
+open import Categories.Category.Monoidal using (MonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal using (StrongMonoidalFunctor)
+open import Categories.Functor.Monoidal.Properties using (∘-StrongMonoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal using (module Strong)
+open import Category.Instance.Preorder.Primitive.Monoidals.Strong using (_≃_; module ≃) renaming (Monoidals to Monoidalsₚ)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive using (module Isomorphism)
+open import Preorder.Primitive.MonotoneMap using (MonotoneMap)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (MonoidalMonotone)
+
+open Strong using (MonoidalNaturalIsomorphism)
+-- The free monoidal preorder of a monoidal category
+
+module _ {o ℓ e : Level} where
+
+ monoidalPreorder : MonoidalCategory o ℓ e → MonoidalPreorder o ℓ
+ monoidalPreorder C = record
+ { U = Preorder.Free.₀ U
+ ; monoidal = record
+ { unit = unit
+ ; tensor = Preorder.Free.₁ ⊗
+ ; unitaryˡ = Preorder.Free.F-resp-≈ unitorˡ-naturalIsomorphism
+ ; unitaryʳ = Preorder.Free.F-resp-≈ unitorʳ-naturalIsomorphism
+ ; associative = λ x y z → record
+ { from = associator.from {x} {y} {z}
+ ; to = associator.to {x} {y} {z}
+ }
+ }
+ }
+ where
+ open MonoidalCategory C
+ open ⊗-Util monoidal
+
+ module _ {A B : MonoidalCategory o ℓ e} where
+
+ monoidalMonotone : StrongMonoidalFunctor A B → MonoidalMonotone (monoidalPreorder A) (monoidalPreorder B)
+ monoidalMonotone F = record
+ { F = Preorder.Free.₁ F.F
+ ; ε = record { F.ε }
+ ; ⊗-homo = λ p₁ p₂ → Preorder.Free.F-resp-≈ F.⊗-homo (p₁ , p₂)
+ }
+ where
+ module F = StrongMonoidalFunctor F
+
+ open MonoidalNaturalIsomorphism using (U)
+
+ pointwiseIsomorphism
+ : {F G : StrongMonoidalFunctor A B}
+ → MonoidalNaturalIsomorphism F G
+ → monoidalMonotone F ≃ monoidalMonotone G
+ pointwiseIsomorphism F≃G = Preorder.Free.F-resp-≈ (U F≃G)
+
+Free : {o ℓ e : Level} → Functor (StrongMonoidals o ℓ e) (Monoidalsₚ o ℓ)
+Free = record
+ { F₀ = monoidalPreorder
+ ; F₁ = monoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = monoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = monoidalMonotone (∘-StrongMonoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (Monoidalsₚ _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})
diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
index 8bf567d..ebb3dc0 100644
--- a/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
+++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Lax.agda
@@ -5,7 +5,7 @@ module Functor.Free.Instance.SymmetricMonoidalPreorder.Lax where
import Functor.Free.Instance.MonoidalPreorder.Lax as MP
open import Categories.Category using (Category)
-open import Category.Instance.SymMonCat using (SymMonCat)
+open import Category.Instance.SymMonCat using (module Lax)
open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
open import Categories.Functor using (Functor)
open import Categories.Functor.Monoidal.Symmetric using () renaming (module Lax to Lax₁)
@@ -54,7 +54,7 @@ module _ {o ℓ e : Level} where
→ symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G
pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋
-Free : {o ℓ e : Level} → Functor (SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
+Free : {o ℓ e : Level} → Functor (Lax.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
Free = record
{ F₀ = symmetricMonoidalPreorder
; F₁ = symmetricMonoidalMonotone
diff --git a/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda
new file mode 100644
index 0000000..f759f17
--- /dev/null
+++ b/Functor/Free/Instance/SymmetricMonoidalPreorder/Strong.agda
@@ -0,0 +1,68 @@
+{-# OPTIONS --without-K --safe #-}
+
+module Functor.Free.Instance.SymmetricMonoidalPreorder.Strong where
+
+import Functor.Free.Instance.MonoidalPreorder.Strong as MP
+
+open import Categories.Category using (Category)
+open import Category.Instance.SymMonCat using (module Strong)
+open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
+open import Categories.Functor using (Functor)
+open import Categories.Functor.Monoidal.Symmetric using () renaming (module Strong to Strong₁)
+open import Categories.Functor.Monoidal.Symmetric.Properties using (∘-StrongSymmetricMonoidal)
+open import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric using () renaming (module Strong to Strong₂)
+open import Category.Instance.Preorder.Primitive.Monoidals.Symmetric.Strong using (SymMonPre; _≃_; module ≃)
+open import Data.Product using (_,_)
+open import Level using (Level)
+open import Preorder.Primitive.Monoidal using (MonoidalPreorder; SymmetricMonoidalPreorder)
+open import Preorder.Primitive.MonotoneMap.Monoidal.Strong using (SymmetricMonoidalMonotone)
+
+open Strong₁ using (SymmetricMonoidalFunctor)
+open Strong₂ using (SymmetricMonoidalNaturalIsomorphism)
+-- The free symmetric monoidal preorder of a symmetric monoidal category
+
+module _ {o ℓ e : Level} where
+
+ symmetricMonoidalPreorder : SymmetricMonoidalCategory o ℓ e → SymmetricMonoidalPreorder o ℓ
+ symmetricMonoidalPreorder C = record
+ { M
+ ; symmetric = record
+ { symmetric = λ x y → braiding.⇒.η (x , y)
+ }
+ }
+ where
+ open SymmetricMonoidalCategory C
+ module M = MonoidalPreorder (MP.Free.₀ monoidalCategory)
+
+ module _ {A B : SymmetricMonoidalCategory o ℓ e} where
+
+ symmetricMonoidalMonotone
+ : SymmetricMonoidalFunctor A B
+ → SymmetricMonoidalMonotone (symmetricMonoidalPreorder A) (symmetricMonoidalPreorder B)
+ symmetricMonoidalMonotone F = record
+ { monoidalMonotone = MP.Free.₁ F.monoidalFunctor
+ }
+ where
+ module F = SymmetricMonoidalFunctor F
+
+ open SymmetricMonoidalNaturalIsomorphism using (⌊_⌋)
+
+ pointwiseIsomorphism
+ : {F G : SymmetricMonoidalFunctor A B}
+ → SymmetricMonoidalNaturalIsomorphism F G
+ → symmetricMonoidalMonotone F ≃ symmetricMonoidalMonotone G
+ pointwiseIsomorphism F≃G = MP.Free.F-resp-≈ ⌊ F≃G ⌋
+
+Free : {o ℓ e : Level} → Functor (Strong.SymMonCat {o} {ℓ} {e}) (SymMonPre o ℓ)
+Free = record
+ { F₀ = symmetricMonoidalPreorder
+ ; F₁ = symmetricMonoidalMonotone
+ ; identity = λ {A} → ≃.refl {A = symmetricMonoidalPreorder A} {x = id}
+ ; homomorphism = λ {f = f} {h} → ≃.refl {x = symmetricMonoidalMonotone (∘-StrongSymmetricMonoidal h f)}
+ ; F-resp-≈ = pointwiseIsomorphism
+ }
+ where
+ open Category (SymMonPre _ _) using (id)
+
+module Free {o ℓ e} = Functor (Free {o} {ℓ} {e})