aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Cospan/Embed.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/Cospan/Embed.agda')
-rw-r--r--Functor/Instance/Cospan/Embed.agda185
1 files changed, 185 insertions, 0 deletions
diff --git a/Functor/Instance/Cospan/Embed.agda b/Functor/Instance/Cospan/Embed.agda
new file mode 100644
index 0000000..77f0361
--- /dev/null
+++ b/Functor/Instance/Cospan/Embed.agda
@@ -0,0 +1,185 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+module Functor.Instance.Cospan.Embed {o ℓ e} (𝒞 : FinitelyCocompleteCategory o ℓ e) where
+
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism as Morphism
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Category.Diagram.Pushout as Pushout′
+
+open import Categories.Category using (_[_,_]; _[_∘_]; _[_≈_])
+open import Categories.Category.Core using (Category)
+open import Categories.Functor.Core using (Functor)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Data.Product.Base using (_,_)
+open import Function.Base using (id)
+open import Functor.Instance.Cospan.Stack using (⊗)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module Cospans = Category Cospans
+
+open 𝒞 using (U; pushout; _+₁_)
+open Cospans using (_≈_)
+open DiagramPushout U using (Pushout)
+open Morphism U using (module ≅; _≅_)
+open PushoutProperties U using (up-to-iso)
+open Pushout′ U using (pushout-id-g; pushout-f-id)
+
+L₁ : {A B : 𝒞.Obj} → U [ A , B ] → Cospans [ A , B ]
+L₁ f = record
+ { f₁ = f
+ ; f₂ = 𝒞.id
+ }
+
+L-identity : {A : 𝒞.Obj} → L₁ 𝒞.id ≈ Cospans.id {A}
+L-identity = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = 𝒞.identity²
+ ; from∘f₂≈f₂′ = 𝒞.identity²
+ }
+
+L-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ]
+L-homomorphism {X} {Y} {Z} {f} {g} = record
+ { ≅N = up-to-iso P′ P
+ ; from∘f₁≈f₁′ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute})
+ ; from∘f₂≈f₂′ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ
+ }
+ where
+ open ⇒-Reasoning U
+ open 𝒞.HomReasoning
+ open 𝒞.Equiv
+ P P′ : Pushout 𝒞.id g
+ P = pushout 𝒞.id g
+ P′ = pushout-id-g
+ module P = Pushout P
+ module P′ = Pushout P′
+
+L-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ]
+L-resp-≈ {A} {B} {f} {g} f≈g = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = 𝒞.identityˡ ○ f≈g
+ ; from∘f₂≈f₂′ = 𝒞.identity²
+ }
+ where
+ open 𝒞.HomReasoning
+
+L : Functor U Cospans
+L = record
+ { F₀ = id
+ ; F₁ = L₁
+ ; identity = L-identity
+ ; homomorphism = L-homomorphism
+ ; F-resp-≈ = L-resp-≈
+ }
+
+R₁ : {A B : 𝒞.Obj} → U [ B , A ] → Cospans [ A , B ]
+R₁ g = record
+ { f₁ = 𝒞.id
+ ; f₂ = g
+ }
+
+R-identity : {A : 𝒞.Obj} → R₁ 𝒞.id ≈ Cospans.id {A}
+R-identity = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = 𝒞.identity²
+ ; from∘f₂≈f₂′ = 𝒞.identity²
+ }
+
+R-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ]
+R-homomorphism {X} {Y} {Z} {f} {g} = record
+ { ≅N = up-to-iso P′ P
+ ; from∘f₁≈f₁′ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ
+ ; from∘f₂≈f₂′ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute})
+ }
+ where
+ open ⇒-Reasoning U
+ open 𝒞.HomReasoning
+ open 𝒞.Equiv
+ P P′ : Pushout f 𝒞.id
+ P = pushout f 𝒞.id
+ P′ = pushout-f-id
+ module P = Pushout P
+ module P′ = Pushout P′
+
+R-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ]
+R-resp-≈ {A} {B} {f} {g} f≈g = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = 𝒞.identity²
+ ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ f≈g
+ }
+ where
+ open 𝒞.HomReasoning
+
+R : Functor 𝒞.op Cospans
+R = record
+ { F₀ = id
+ ; F₁ = R₁
+ ; identity = R-identity
+ ; homomorphism = R-homomorphism
+ ; F-resp-≈ = R-resp-≈
+ }
+
+B₁ : {A B C : 𝒞.Obj} → U [ A , C ] → U [ B , C ] → Cospans [ A , B ]
+B₁ f g = record
+ { f₁ = f
+ ; f₂ = g
+ }
+
+B∘L : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ B₁ g h ∘ L₁ f ] ≈ B₁ (U [ g ∘ f ]) h
+B∘L {W} {X} {Y} {Z} {f} {g} {h} = record
+ { ≅N = up-to-iso P P′
+ ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute})
+ ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ
+ }
+ where
+ open ⇒-Reasoning U
+ open 𝒞.HomReasoning
+ open 𝒞.Equiv
+ P P′ : Pushout 𝒞.id g
+ P = pushout 𝒞.id g
+ P′ = pushout-id-g
+ module P = Pushout P
+ module P′ = Pushout P′
+
+R∘B : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ B₁ f g ] ≈ B₁ f (U [ g ∘ h ])
+R∘B {W} {X} {Y} {Z} {f} {g} {h} = record
+ { ≅N = up-to-iso P P′
+ ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ
+ ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute})
+ }
+ where
+ open ⇒-Reasoning U
+ open 𝒞.HomReasoning
+ open 𝒞.Equiv
+ P P′ : Pushout g 𝒞.id
+ P = pushout g 𝒞.id
+ P′ = pushout-f-id
+ module P = Pushout P
+ module P′ = Pushout P′
+
+module _ where
+
+ open _≅_
+
+ ≅-L-R : ∀ {X Y : 𝒞.Obj} (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y)
+ ≅-L-R {X} {Y} X≅Y = record
+ { ≅N = X≅Y
+ ; from∘f₁≈f₁′ = isoʳ X≅Y
+ ; from∘f₂≈f₂′ = 𝒞.identityʳ
+ }
+
+module ⊗ = Functor (⊗ 𝒞)
+
+L-resp-⊗ : {X Y X′ Y′ : 𝒞.Obj} {a : U [ X , X′ ]} {b : U [ Y , Y′ ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b)
+L-resp-⊗ {X} {Y} {X′} {Y′} {a} {b} = record
+ { ≅N = ≅.refl
+ ; from∘f₁≈f₁′ = 𝒞.identityˡ
+ ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ)
+ }
+ where
+ open 𝒞.HomReasoning
+ open 𝒞.Equiv
+ open 𝒞 using (+-η; []-cong₂; identityˡ; identityʳ)