diff options
Diffstat (limited to 'Functor/Instance/Cospan/Embed.agda')
| -rw-r--r-- | Functor/Instance/Cospan/Embed.agda | 103 |
1 files changed, 48 insertions, 55 deletions
diff --git a/Functor/Instance/Cospan/Embed.agda b/Functor/Instance/Cospan/Embed.agda index 77f0361..6dbc04a 100644 --- a/Functor/Instance/Cospan/Embed.agda +++ b/Functor/Instance/Cospan/Embed.agda @@ -1,4 +1,5 @@ {-# OPTIONS --without-K --safe #-} +{-# OPTIONS --hidden-argument-puns #-} open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory) @@ -14,9 +15,10 @@ open import Categories.Category using (_[_,_]; _[_∘_]; _[_≈_]) open import Categories.Category.Core using (Category) open import Categories.Functor.Core using (Functor) open import Category.Instance.Cospans 𝒞 using (Cospans) +open import Category.Diagram.Cospan 𝒞 using (cospan) open import Data.Product.Base using (_,_) open import Function.Base using (id) -open import Functor.Instance.Cospan.Stack using (⊗) +open import Functor.Instance.Cospan.Stack 𝒞 using (⊗) module 𝒞 = FinitelyCocompleteCategory 𝒞 module Cospans = Category Cospans @@ -28,24 +30,26 @@ open Morphism U using (module ≅; _≅_) open PushoutProperties U using (up-to-iso) open Pushout′ U using (pushout-id-g; pushout-f-id) -L₁ : {A B : 𝒞.Obj} → U [ A , B ] → Cospans [ A , B ] -L₁ f = record - { f₁ = f - ; f₂ = 𝒞.id - } +private + variable + A B C : 𝒞.Obj + W X Y Z : 𝒞.Obj + +L₁ : U [ A , B ] → Cospans [ A , B ] +L₁ f = cospan f 𝒞.id -L-identity : {A : 𝒞.Obj} → L₁ 𝒞.id ≈ Cospans.id {A} +L-identity : L₁ 𝒞.id ≈ Cospans.id {A} L-identity = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = 𝒞.identity² - ; from∘f₂≈f₂′ = 𝒞.identity² + ; from∘f₁≈f₁ = 𝒞.identity² + ; from∘f₂≈f₂ = 𝒞.identity² } -L-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ] +L-homomorphism : {f : U [ X , Y ]} {g : U [ Y , Z ]} → L₁ (U [ g ∘ f ]) ≈ Cospans [ L₁ g ∘ L₁ f ] L-homomorphism {X} {Y} {Z} {f} {g} = record { ≅N = up-to-iso P′ P - ; from∘f₁≈f₁′ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute}) - ; from∘f₂≈f₂′ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ + ; from∘f₁≈f₁ = pullˡ (P′.universal∘i₁≈h₁ {eq = P.commute}) + ; from∘f₂≈f₂ = P′.universal∘i₂≈h₂ {eq = P.commute} ○ sym 𝒞.identityʳ } where open ⇒-Reasoning U @@ -57,11 +61,11 @@ L-homomorphism {X} {Y} {Z} {f} {g} = record module P = Pushout P module P′ = Pushout P′ -L-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ] +L-resp-≈ : {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ L₁ f ≈ L₁ g ] L-resp-≈ {A} {B} {f} {g} f≈g = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = 𝒞.identityˡ ○ f≈g - ; from∘f₂≈f₂′ = 𝒞.identity² + ; from∘f₁≈f₁ = 𝒞.identityˡ ○ f≈g + ; from∘f₂≈f₂ = 𝒞.identity² } where open 𝒞.HomReasoning @@ -75,24 +79,21 @@ L = record ; F-resp-≈ = L-resp-≈ } -R₁ : {A B : 𝒞.Obj} → U [ B , A ] → Cospans [ A , B ] -R₁ g = record - { f₁ = 𝒞.id - ; f₂ = g - } +R₁ : U [ B , A ] → Cospans [ A , B ] +R₁ g = cospan 𝒞.id g -R-identity : {A : 𝒞.Obj} → R₁ 𝒞.id ≈ Cospans.id {A} +R-identity : R₁ 𝒞.id ≈ Cospans.id {A} R-identity = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = 𝒞.identity² - ; from∘f₂≈f₂′ = 𝒞.identity² + ; from∘f₁≈f₁ = 𝒞.identity² + ; from∘f₂≈f₂ = 𝒞.identity² } -R-homomorphism : {X Y Z : 𝒞.Obj} {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ] -R-homomorphism {X} {Y} {Z} {f} {g} = record +R-homomorphism : {f : U [ Y , X ]} {g : U [ Z , Y ]} → R₁ (U [ f ∘ g ]) ≈ Cospans [ R₁ g ∘ R₁ f ] +R-homomorphism {f} {g} = record { ≅N = up-to-iso P′ P - ; from∘f₁≈f₁′ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ - ; from∘f₂≈f₂′ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute}) + ; from∘f₁≈f₁ = P′.universal∘i₁≈h₁ {eq = P.commute} ○ sym 𝒞.identityʳ + ; from∘f₂≈f₂ = pullˡ (P′.universal∘i₂≈h₂ {eq = P.commute}) } where open ⇒-Reasoning U @@ -104,11 +105,11 @@ R-homomorphism {X} {Y} {Z} {f} {g} = record module P = Pushout P module P′ = Pushout P′ -R-resp-≈ : {A B : 𝒞.Obj} {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ] -R-resp-≈ {A} {B} {f} {g} f≈g = record +R-resp-≈ : {f g : U [ A , B ]} → U [ f ≈ g ] → Cospans [ R₁ f ≈ R₁ g ] +R-resp-≈ {f} {g} f≈g = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = 𝒞.identity² - ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ f≈g + ; from∘f₁≈f₁ = 𝒞.identity² + ; from∘f₂≈f₂ = 𝒞.identityˡ ○ f≈g } where open 𝒞.HomReasoning @@ -122,17 +123,11 @@ R = record ; F-resp-≈ = R-resp-≈ } -B₁ : {A B C : 𝒞.Obj} → U [ A , C ] → U [ B , C ] → Cospans [ A , B ] -B₁ f g = record - { f₁ = f - ; f₂ = g - } - -B∘L : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ B₁ g h ∘ L₁ f ] ≈ B₁ (U [ g ∘ f ]) h -B∘L {W} {X} {Y} {Z} {f} {g} {h} = record +B∘L : {f : U [ W , X ]} {g : U [ X , Y ]} {h : U [ Z , Y ]} → Cospans [ cospan g h ∘ L₁ f ] ≈ cospan (U [ g ∘ f ]) h +B∘L {f} {g} {h} = record { ≅N = up-to-iso P P′ - ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) - ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ + ; from∘f₁≈f₁ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) + ; from∘f₂≈f₂ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) ○ 𝒞.identityˡ } where open ⇒-Reasoning U @@ -144,11 +139,11 @@ B∘L {W} {X} {Y} {Z} {f} {g} {h} = record module P = Pushout P module P′ = Pushout P′ -R∘B : {W X Y Z : 𝒞.Obj} {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ B₁ f g ] ≈ B₁ f (U [ g ∘ h ]) -R∘B {W} {X} {Y} {Z} {f} {g} {h} = record +R∘B : {f : U [ W , X ]} {g : U [ Y , X ]} {h : U [ Z , Y ]} → Cospans [ R₁ h ∘ cospan f g ] ≈ cospan f (U [ g ∘ h ]) +R∘B {f} {g} {h} = record { ≅N = up-to-iso P P′ - ; from∘f₁≈f₁′ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ - ; from∘f₂≈f₂′ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) + ; from∘f₁≈f₁ = pullˡ (P.universal∘i₁≈h₁ {eq = P′.commute}) ○ 𝒞.identityˡ + ; from∘f₂≈f₂ = pullˡ (P.universal∘i₂≈h₂ {eq = P′.commute}) } where open ⇒-Reasoning U @@ -164,20 +159,18 @@ module _ where open _≅_ - ≅-L-R : ∀ {X Y : 𝒞.Obj} (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y) - ≅-L-R {X} {Y} X≅Y = record + ≅-L-R : (X≅Y : X ≅ Y) → L₁ (to X≅Y) ≈ R₁ (from X≅Y) + ≅-L-R X≅Y = record { ≅N = X≅Y - ; from∘f₁≈f₁′ = isoʳ X≅Y - ; from∘f₂≈f₂′ = 𝒞.identityʳ + ; from∘f₁≈f₁ = isoʳ X≅Y + ; from∘f₂≈f₂ = 𝒞.identityʳ } -module ⊗ = Functor (⊗ 𝒞) - -L-resp-⊗ : {X Y X′ Y′ : 𝒞.Obj} {a : U [ X , X′ ]} {b : U [ Y , Y′ ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b) -L-resp-⊗ {X} {Y} {X′} {Y′} {a} {b} = record +L-resp-⊗ : {a : U [ W , X ]} {b : U [ Y , Z ]} → L₁ (a +₁ b) ≈ ⊗.₁ (L₁ a , L₁ b) +L-resp-⊗ {a} {b} = record { ≅N = ≅.refl - ; from∘f₁≈f₁′ = 𝒞.identityˡ - ; from∘f₂≈f₂′ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ) + ; from∘f₁≈f₁ = 𝒞.identityˡ + ; from∘f₂≈f₂ = 𝒞.identityˡ ○ sym +-η ○ sym ([]-cong₂ identityʳ identityʳ) } where open 𝒞.HomReasoning |
