aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/DecoratedCospan/Embed.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/DecoratedCospan/Embed.agda')
-rw-r--r--Functor/Instance/DecoratedCospan/Embed.agda275
1 files changed, 275 insertions, 0 deletions
diff --git a/Functor/Instance/DecoratedCospan/Embed.agda b/Functor/Instance/DecoratedCospan/Embed.agda
new file mode 100644
index 0000000..4595a8f
--- /dev/null
+++ b/Functor/Instance/DecoratedCospan/Embed.agda
@@ -0,0 +1,275 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Categories.Category.Monoidal.Bundle using (MonoidalCategory; SymmetricMonoidalCategory)
+open import Categories.Functor.Monoidal.Symmetric using (module Lax)
+open import Category.Cocomplete.Finitely.Bundle using (FinitelyCocompleteCategory)
+
+open Lax using (SymmetricMonoidalFunctor)
+open FinitelyCocompleteCategory
+ using ()
+ renaming (symmetricMonoidalCategory to smc)
+
+module Functor.Instance.DecoratedCospan.Embed
+ {o o′ ℓ ℓ′ e e′}
+ (𝒞 : FinitelyCocompleteCategory o ℓ e)
+ {𝒟 : SymmetricMonoidalCategory o′ ℓ′ e′}
+ (F : SymmetricMonoidalFunctor (smc 𝒞) 𝒟) where
+
+import Categories.Category.Monoidal.Reasoning as ⊗-Reasoning
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism.Reasoning as ⇒-Reasoning
+import Category.Diagram.Pushout as Pushout′
+import Functor.Instance.Cospan.Embed 𝒞 as Embed
+
+open import Categories.Category using (Category; _[_,_]; _[_≈_]; _[_∘_])
+open import Categories.Category.Monoidal.Properties using (coherence-inv₃)
+open import Categories.Functor.Properties using ([_]-resp-≅)
+open import Category.Instance.Cospans 𝒞 using (Cospans)
+open import Category.Instance.DecoratedCospans 𝒞 F using (DecoratedCospans)
+
+import Categories.Diagram.Pushout as DiagramPushout
+import Categories.Diagram.Pushout.Properties as PushoutProperties
+import Categories.Morphism as Morphism
+
+open import Categories.Category.Cocartesian using (module CocartesianMonoidal)
+open import Categories.Category.Monoidal.Utilities using (module Shorthands)
+open import Categories.Functor using (Functor; _∘F_)
+open import Data.Product.Base using (_,_)
+open import Function.Base using () renaming (id to idf)
+open import Functor.Instance.DecoratedCospan.Stack using (⊗)
+
+module 𝒞 = FinitelyCocompleteCategory 𝒞
+module 𝒟 = SymmetricMonoidalCategory 𝒟
+module F = SymmetricMonoidalFunctor F
+module Cospans = Category Cospans
+module DecoratedCospans = Category DecoratedCospans
+module mc𝒞 = CocartesianMonoidal 𝒞.U 𝒞.cocartesian
+
+open import Functor.Instance.Decorate 𝒞 F using (Decorate; Decorate-resp-⊗)
+
+private
+ variable
+ A B C D E H : 𝒞.Obj
+ f : 𝒞.U [ A , B ]
+ g : 𝒞.U [ C , D ]
+ h : 𝒞.U [ E , H ]
+
+L : Functor 𝒞.U DecoratedCospans
+L = Decorate ∘F Embed.L
+
+R : Functor 𝒞.op DecoratedCospans
+R = Decorate ∘F Embed.R
+
+B₁ : 𝒞.U [ A , C ] → 𝒞.U [ B , C ] → 𝒟.U [ 𝒟.unit , F.F₀ C ] → DecoratedCospans [ A , B ]
+B₁ f g s = record
+ { cospan = Embed.B₁ f g
+ ; decoration = s
+ }
+
+module _ where
+
+ module L = Functor L
+ module R = Functor R
+
+ module Codiagonal where
+
+ open mc𝒞 using (unitorˡ; unitorʳ; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open unitorʳ using () renaming (to to ρ⇐′) public
+ open 𝒞 using (U; _+_; []-cong₂; []∘+₁; ∘-distribˡ-[]; inject₁; inject₂; ¡)
+ renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open HomReasoning
+ open ⇒-Reasoning 𝒞.U
+
+ μ : {X : Obj} → X + X ⇒ X
+ μ = [ id , id ]′
+
+ μ∘+ : {X Y Z : Obj} {f : X ⇒ Z} {g : Y ⇒ Z} → [ f , g ]′ ≈ μ ∘ f +₁ g
+ μ∘+ = []-cong₂ (sym identityˡ) (sym identityˡ) ○ sym []∘+₁
+
+ μ∘¡ˡ : {X : Obj} → μ ∘ ¡ +₁ id ∘ λ⇐′ ≈ id {X}
+ μ∘¡ˡ = begin
+ μ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ pullˡ (sym μ∘+) ⟩
+ [ ¡ , id ]′ ∘ λ⇐′ ≈⟨ inject₂ ⟩
+ id ∎
+
+ μ∘¡ʳ : {X : Obj} → μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈ id {X}
+ μ∘¡ʳ = begin
+ μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ pullˡ (sym μ∘+) ⟩
+ [ id , ¡ ]′ ∘ ρ⇐′ ≈⟨ inject₁ ⟩
+ id ∎
+
+
+ μ-natural : {X Y : Obj} {f : X ⇒ Y} → f ∘ μ ≈ μ ∘ f +₁ f
+ μ-natural = ∘-distribˡ-[] ○ []-cong₂ (identityʳ ○ sym identityˡ) (identityʳ ○ sym identityˡ) ○ sym []∘+₁
+
+ B∘L : {A B M C : 𝒞.Obj}
+ → {f : 𝒞.U [ A , B ]}
+ → {g : 𝒞.U [ B , M ]}
+ → {h : 𝒞.U [ C , M ]}
+ → {s : 𝒟.U [ 𝒟.unit , F.₀ M ]}
+ → DecoratedCospans [ DecoratedCospans [ B₁ g h s ∘ L.₁ f ] ≈ B₁ (𝒞.U [ g ∘ f ]) h s ]
+ B∘L {A} {B} {M} {C} {f} {g} {h} {s} = record
+ { cospans-≈ = Embed.B∘L
+ ; same-deco = same-deco
+ }
+ where
+
+ module _ where
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open 𝒞 using (U)
+ open Category U
+ open mc𝒞 using (unitorˡ; unitorˡ-commute-to; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open ⊗-Reasoning +-monoidal
+ open ⇒-Reasoning 𝒞.U
+ open Equiv
+
+ open Pushout′ 𝒞.U using (pushout-id-g)
+ open PushoutProperties 𝒞.U using (up-to-iso)
+ open DiagramPushout 𝒞.U using (Pushout)
+ P P′ : Pushout 𝒞.id g
+ P = pushout 𝒞.id g
+ P′ = pushout-id-g
+ module P = Pushout P
+ module P′ = Pushout P′
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_ using (from)
+ open P using (i₁ ; i₂; universal∘i₂≈h₂) public
+
+ open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ˡ)
+
+ ≅ : P.Q ⇒ M
+ ≅ = up-to-iso P P′ .from
+
+ ≅∘[]∘¡+id : ((≅ ∘ [ i₁ , i₂ ]′) ∘ ¡ +₁ id) ∘ λ⇐′ ≈ id
+ ≅∘[]∘¡+id = begin
+ ((≅ ∘ [ i₁ , i₂ ]′) ∘ ¡ +₁ id) ∘ λ⇐′ ≈⟨ assoc²αε ⟩
+ ≅ ∘ [ i₁ , i₂ ]′ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ refl⟩∘⟨ pushˡ μ∘+ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ i₂ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ refl⟩∘⟨ pull-center (sym split₁ʳ) ⟩
+ ≅ ∘ μ ∘ (i₁ ∘ ¡) +₁ i₂ ∘ λ⇐′ ≈⟨ extendʳ μ-natural ⟩
+ μ ∘ ≅ +₁ ≅ ∘ (i₁ ∘ ¡) +₁ i₂ ∘ λ⇐′ ≈⟨ pull-center (sym ⊗-distrib-over-∘) ⟩
+ μ ∘ (≅ ∘ i₁ ∘ ¡) +₁ (≅ ∘ i₂) ∘ λ⇐′ ≈⟨ refl⟩∘⟨ sym (¡-unique (≅ ∘ i₁ ∘ ¡)) ⟩⊗⟨ universal∘i₂≈h₂ ⟩∘⟨refl ⟩
+ μ ∘ ¡ +₁ id ∘ λ⇐′ ≈⟨ μ∘¡ˡ ⟩
+ id ∎
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorˡ-commute-from) renaming (module unitorˡ to λ-)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+
+ same-deco : F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈ s
+ same-deco = begin
+ F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ (F₁ ¡ ∘ ε) ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ F₁ ¡ ⊗₁ id ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ sym F.identity ⟩∘⟨refl ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (B , M) ∘ F₁ ¡ ⊗₁ F₁ 𝒞.id ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (¡ , 𝒞.id)) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ F₁ (¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₁₂ ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ φ (⊥ , M) ∘ ε ⊗₁ id ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorˡ) F.unitaryˡ) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) ∘ F₁ λ⇐′ ∘ λ⇒ ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ λ⇒ ∘ id ⊗₁ s ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorˡ-commute-from ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ∘ λ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ coherence-inv₃ monoidal ⟨
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ∘ λ⇒ ∘ λ⇐ ≈⟨ refl⟩∘⟨ (sym-assoc ○ cancelʳ λ-.isoʳ) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ ¡ +₁ 𝒞.id) 𝒞.∘ λ⇐′) ∘ s ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘¡+id ○ F.identity) ⟩
+ s ∎
+
+ R∘B : {A N B C : 𝒞.Obj}
+ → {f : 𝒞.U [ A , N ]}
+ → {g : 𝒞.U [ B , N ]}
+ → {h : 𝒞.U [ C , B ]}
+ → {s : 𝒟.U [ 𝒟.unit , F.₀ N ]}
+ → DecoratedCospans [ DecoratedCospans [ R.₁ h ∘ B₁ f g s ] ≈ B₁ f (𝒞.U [ g ∘ h ]) s ]
+ R∘B {A} {N} {B} {C} {f} {g} {h} {s} = record
+ { cospans-≈ = Embed.R∘B
+ ; same-deco = same-deco
+ }
+ where
+
+ module _ where
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open 𝒞 using (U)
+ open Category U
+ open mc𝒞 using (unitorʳ; unitorˡ; unitorˡ-commute-to; +-monoidal) public
+ open unitorˡ using () renaming (to to λ⇐′) public
+ open unitorʳ using () renaming (to to ρ⇐′) public
+ open ⊗-Reasoning +-monoidal
+ open ⇒-Reasoning 𝒞.U
+ open Equiv
+
+ open Pushout′ 𝒞.U using (pushout-f-id)
+ open PushoutProperties 𝒞.U using (up-to-iso)
+ open DiagramPushout 𝒞.U using (Pushout)
+ P P′ : Pushout g 𝒞.id
+ P = pushout g 𝒞.id
+ P′ = pushout-f-id
+ module P = Pushout P
+ module P′ = Pushout P′
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_ using (from)
+ open P using (i₁ ; i₂; universal∘i₁≈h₁) public
+
+ open Codiagonal using (μ; μ-natural; μ∘+; μ∘¡ʳ)
+
+ ≅ : P.Q ⇒ N
+ ≅ = up-to-iso P P′ .from
+
+ ≅∘[]∘id+¡ : ((≅ ∘ [ i₁ , i₂ ]′) ∘ id +₁ ¡) ∘ ρ⇐′ ≈ id
+ ≅∘[]∘id+¡ = begin
+ ((≅ ∘ [ i₁ , i₂ ]′) ∘ id +₁ ¡) ∘ ρ⇐′ ≈⟨ assoc²αε ⟩
+ ≅ ∘ [ i₁ , i₂ ]′ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ pushˡ μ∘+ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ i₂ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ pull-center merge₂ʳ ⟩
+ ≅ ∘ μ ∘ i₁ +₁ (i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ extendʳ μ-natural ⟩
+ μ ∘ ≅ +₁ ≅ ∘ i₁ +₁ (i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ pull-center (sym ⊗-distrib-over-∘) ⟩
+ μ ∘ (≅ ∘ i₁) +₁ (≅ ∘ i₂ ∘ ¡) ∘ ρ⇐′ ≈⟨ refl⟩∘⟨ universal∘i₁≈h₁ ⟩⊗⟨ sym (¡-unique (≅ ∘ i₂ ∘ ¡)) ⟩∘⟨refl ⟩
+ μ ∘ id +₁ ¡ ∘ ρ⇐′ ≈⟨ μ∘¡ʳ ⟩
+ id ∎
+
+ open 𝒟 using (U; monoidal; _⊗₁_; unitorʳ-commute-from) renaming (module unitorˡ to λ-; module unitorʳ to ρ)
+ open 𝒞 using (¡; ⊥; ¡-unique; pushout) renaming ([_,_] to [_,_]′; _+₁_ to infixr 10 _+₁_ )
+ open Category U
+ open Equiv
+ open ⇒-Reasoning U
+ open ⊗-Reasoning monoidal
+ open F.⊗-homo using () renaming (η to φ; commute to φ-commute)
+ open F using (F₁; ε)
+ open Shorthands monoidal
+
+ same-deco : F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈ s
+ same-deco = begin
+ F₁ ≅ ∘ F₁ [ i₁ , i₂ ]′ ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ s ⊗₁ (F₁ ¡ ∘ ε) ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ id ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ sym F.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ φ (N , B) ∘ F₁ 𝒞.id ⊗₁ F₁ ¡ ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (φ-commute (𝒞.id , ¡)) ⟩
+ F₁ (≅ 𝒞.∘ [ i₁ , i₂ ]′) ∘ F₁ (𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ s ⊗₁ ε ∘ ρ⇐ ≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ serialize₂₁ ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ φ (N , ⊥) ∘ id ⊗₁ ε ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ (switch-fromtoˡ ([ F.F ]-resp-≅ unitorʳ) F.unitaryʳ) ⟩
+ F₁ ((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) ∘ F₁ ρ⇐′ ∘ ρ⇒ ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ pullˡ (sym F.homomorphism) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ ρ⇒ ∘ s ⊗₁ id ∘ ρ⇐ ≈⟨ refl⟩∘⟨ extendʳ unitorʳ-commute-from ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ s ∘ ρ⇒ ∘ ρ⇐ ≈⟨ refl⟩∘⟨ (sym-assoc ○ cancelʳ ρ.isoʳ) ⟩
+ F₁ (((≅ 𝒞.∘ [ i₁ , i₂ ]′) 𝒞.∘ 𝒞.id +₁ ¡) 𝒞.∘ ρ⇐′) ∘ s ≈⟨ elimˡ (F.F-resp-≈ ≅∘[]∘id+¡ ○ F.identity) ⟩
+ s ∎
+
+ open Morphism 𝒞.U using (_≅_)
+ open _≅_
+
+ ≅-L-R : (X≅Y : A ≅ B) → DecoratedCospans [ L.₁ (to X≅Y) ≈ R.₁ (from X≅Y) ]
+ ≅-L-R X≅Y = Decorate.F-resp-≈ (Embed.≅-L-R X≅Y)
+ where
+ module Decorate = Functor Decorate
+
+ module ⊗ = Functor (⊗ 𝒞 F)
+ open 𝒞 using (_+₁_)
+
+ L-resp-⊗ : DecoratedCospans [ L.₁ (f +₁ g) ≈ ⊗.₁ (L.₁ f , L.₁ g) ]
+ L-resp-⊗ = Decorate.F-resp-≈ Embed.L-resp-⊗ ○ Decorate-resp-⊗
+ where
+ module Decorate = Functor Decorate
+ open DecoratedCospans.HomReasoning