aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/FreeCMonoid.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/FreeCMonoid.agda')
-rw-r--r--Functor/Instance/FreeCMonoid.agda67
1 files changed, 0 insertions, 67 deletions
diff --git a/Functor/Instance/FreeCMonoid.agda b/Functor/Instance/FreeCMonoid.agda
deleted file mode 100644
index 1b241b7..0000000
--- a/Functor/Instance/FreeCMonoid.agda
+++ /dev/null
@@ -1,67 +0,0 @@
-{-# OPTIONS --without-K --safe #-}
-
-open import Level using (Level; _⊔_)
-
-module Functor.Instance.FreeCMonoid {c ℓ : Level} where
-
-import Categories.Object.Monoid as MonoidObject
-import Object.Monoid.Commutative as CMonoidObject
-
-open import Categories.Category.Instance.Setoids using (Setoids)
-open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory)
-open import Categories.Functor using (Functor)
-open import Categories.NaturalTransformation using (NaturalTransformation)
-open import Category.Construction.CMonoids using (CMonoids)
-open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×)
-open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++-assoc; ++-identityˡ; ++-identityʳ; ++-comm)
-open import Data.Product using (_,_)
-open import Function using (_⟶ₛ_)
-open import Functor.Instance.Multiset {c} {ℓ} using (Multiset)
-open import NaturalTransformation.Instance.EmptyMultiset {c} {ℓ} using (⊤⇒[])
-open import NaturalTransformation.Instance.MultisetAppend {c} {ℓ} using (++)
-open import Relation.Binary using (Setoid)
-
-module Multiset = Functor Multiset
-module Setoids-× = SymmetricMonoidalCategory Setoids-×
-module ++ = NaturalTransformation ++
-module ⊤⇒[] = NaturalTransformation ⊤⇒[]
-
-open Functor
-open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒)
-open CMonoidObject Setoids-×.symmetric using (CommutativeMonoid; IsCommutativeMonoid; CommutativeMonoid⇒)
-open IsCommutativeMonoid
-open IsMonoid
-open CommutativeMonoid⇒
-open Monoid⇒
-
-module _ (X : Setoid c ℓ) where
-
- private
- module X = Setoid X
- module MultisetX = Setoid (Multiset.₀ X)
-
- MultisetCMonoid : IsCommutativeMonoid (Multiset.₀ X)
- MultisetCMonoid .isMonoid .μ = ++.η X
- MultisetCMonoid .isMonoid .η = ⊤⇒[].η X
- MultisetCMonoid .isMonoid .assoc {(x , y) , z} = ++-assoc X x y z
- MultisetCMonoid .isMonoid .identityˡ {_ , x} = ++-identityˡ X x
- MultisetCMonoid .isMonoid .identityʳ {x , _} = MultisetX.sym (++-identityʳ X x)
- MultisetCMonoid .commutative {x , y} = ++-comm X x y
-
-FreeCMonoid₀ : (X : Setoid c ℓ) → CommutativeMonoid
-FreeCMonoid₀ X = record { isCommutativeMonoid = MultisetCMonoid X }
-
-FreeCMonoid₁
- : {A B : Setoid c ℓ}
- (f : A ⟶ₛ B)
- → CommutativeMonoid⇒ (FreeCMonoid₀ A) (FreeCMonoid₀ B)
-FreeCMonoid₁ f .monoid⇒ .arr = Multiset.₁ f
-FreeCMonoid₁ f .monoid⇒ .preserves-μ {xy} = ++.sym-commute f {xy}
-FreeCMonoid₁ f .monoid⇒ .preserves-η = ⊤⇒[].commute f
-
-FreeCMonoid : Functor (Setoids c ℓ) (CMonoids Setoids-×.symmetric)
-FreeCMonoid .F₀ = FreeCMonoid₀
-FreeCMonoid .F₁ = FreeCMonoid₁
-FreeCMonoid .identity {X} = Multiset.identity {X}
-FreeCMonoid .homomorphism {X} {Y} {Z} {f} {g} = Multiset.homomorphism {X} {Y} {Z} {f} {g}
-FreeCMonoid .F-resp-≈ {A} {B} {f} {g} = Multiset.F-resp-≈ {A} {B} {f} {g}