aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/List.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/List.agda')
-rw-r--r--Functor/Instance/List.agda54
1 files changed, 54 insertions, 0 deletions
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
new file mode 100644
index 0000000..05db349
--- /dev/null
+++ b/Functor/Instance/List.agda
@@ -0,0 +1,54 @@
+{-# OPTIONS --without-K --safe #-}
+
+open import Level using (Level; _⊔_)
+
+module Functor.Instance.List {c ℓ : Level} where
+
+import Data.List as List
+import Data.List.Properties as ListProps
+import Data.List.Relation.Binary.Pointwise as PW
+
+open import Categories.Category.Instance.Setoids using (Setoids)
+open import Categories.Functor using (Functor)
+open import Data.Setoid using (∣_∣)
+open import Function.Base using (_∘_; id)
+open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
+open import Relation.Binary using (Setoid)
+
+open Functor
+open Setoid
+open Func
+
+private
+ variable
+ A B C : Setoid c ℓ
+
+-- the List functor takes a carrier A to lists of A
+-- and the equivalence on A to pointwise equivalence on lists of A
+
+Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
+Listₛ = PW.setoid
+
+-- List on morphisms is the familiar map operation
+-- which applies the same function to every element of a list
+
+mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
+mapₛ f .to = List.map (to f)
+mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
+
+map-id : (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ A) (List.map id xs) xs
+map-id {A} = PW.map (reflexive A) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-id
+
+List-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Listₛ A ∣)
+ → PW.Pointwise (_≈_ C) (List.map (to g ∘ to f) xs) (List.map (to g) (List.map (to f) xs))
+List-homo {C = C} f g = PW.map (reflexive C) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-∘
+
+List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
+List .F₀ = Listₛ
+List .F₁ = mapₛ
+List .identity {A} {xs} = map-id {A} xs
+List .homomorphism {f = f} {g} {xs} = List-homo f g xs
+List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)