aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/List.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/List.agda')
-rw-r--r--Functor/Instance/List.agda61
1 files changed, 34 insertions, 27 deletions
diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda
index b40670d..ceb73e1 100644
--- a/Functor/Instance/List.agda
+++ b/Functor/Instance/List.agda
@@ -4,13 +4,12 @@ open import Level using (Level; _⊔_)
module Functor.Instance.List {c ℓ : Level} where
-import Data.List as List
import Data.List.Properties as ListProps
import Data.List.Relation.Binary.Pointwise as PW
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
-open import Data.Setoid using (∣_∣)
+open import Data.Setoid using (∣_∣; _⇒ₛ_)
open import Function.Base using (_∘_; id)
open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)
open import Relation.Binary using (Setoid)
@@ -19,40 +18,48 @@ open Functor
open Setoid using (reflexive)
open Func
+open import Data.Opaque.List as List hiding (List)
+
private
variable
A B C : Setoid c ℓ
--- the List functor takes a carrier A to lists of A
--- and the equivalence on A to pointwise equivalence on lists of A
+open import Function.Construct.Identity using () renaming (function to Id)
+open import Function.Construct.Setoid using (_∙_)
-Listₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ)
-Listₛ = PW.setoid
+opaque
--- List on morphisms is the familiar map operation
--- which applies the same function to every element of a list
+ unfolding List.List
+
+ map-id
+ : (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ A))
+ → mapₛ (Id _) ⟨$⟩ xs ≈ xs
+ map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
-mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B
-mapₛ f .to = List.map (to f)
-mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f)
+ List-homo
+ : (f : A ⟶ₛ B)
+ (g : B ⟶ₛ C)
+ → (xs : ∣ Listₛ A ∣)
+ → (open Setoid (Listₛ C))
+ → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs)
+ List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
-map-id
- : (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ A))
- → List.map id xs ≈ xs
-map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id
+ List-resp-≈
+ : (f g : A ⟶ₛ B)
+ → (let open Setoid (A ⇒ₛ B) in f ≈ g)
+ → (let open Setoid (Listₛ A ⇒ₛ Listₛ B) in mapₛ f ≈ mapₛ g)
+ List-resp-≈ f g f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
-List-homo
- : (f : A ⟶ₛ B)
- (g : B ⟶ₛ C)
- → (xs : ∣ Listₛ A ∣)
- → (open Setoid (Listₛ C))
- → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs)
-List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘
+-- the List functor takes a carrier A to lists of A
+-- and the equivalence on A to pointwise equivalence on lists of A
+
+-- List on morphisms is the familiar map operation
+-- which applies the same function to every element of a list
List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))
-List .F₀ = Listₛ
-List .F₁ = mapₛ
-List .identity {A} {xs} = map-id {A} xs
+List .F₀ = List.Listₛ
+List .F₁ = List.mapₛ
+List .identity {_} {xs} = map-id xs
List .homomorphism {f = f} {g} {xs} = List-homo f g xs
-List .F-resp-≈ {A} {B} {f} {g} f≈g = PW.map⁺ (to f) (to g) (PW.refl f≈g)
+List .F-resp-≈ {f = f} {g} f≈g = List-resp-≈ f g f≈g