diff options
Diffstat (limited to 'Functor/Instance/Multiset.agda')
| -rw-r--r-- | Functor/Instance/Multiset.agda | 72 |
1 files changed, 72 insertions, 0 deletions
diff --git a/Functor/Instance/Multiset.agda b/Functor/Instance/Multiset.agda new file mode 100644 index 0000000..b961c7b --- /dev/null +++ b/Functor/Instance/Multiset.agda @@ -0,0 +1,72 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; _⊔_) + +module Functor.Instance.Multiset {c ℓ : Level} where + +import Data.Opaque.List as L +import Data.List.Properties as ListProps +import Data.List.Relation.Binary.Pointwise as PW + +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Functor using (Functor) +open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) +open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) +open import Data.Opaque.Multiset using (Multisetₛ; mapₛ) +open import Data.Setoid using (∣_∣; _⇒ₛ_) +open import Function.Base using (_∘_; id) +open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (_∙_) +open import Relation.Binary using (Setoid) + +open Functor +open Setoid using (reflexive) +open Func + +private + variable + A B C : Setoid c ℓ + +-- the Multiset functor takes a carrier A to lists of A +-- and the equivalence on A to permutation equivalence on lists of A + +-- Multiset on morphisms applies the same function to every element of a multiset + +opaque + unfolding mapₛ + + map-id + : (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ A)) + → mapₛ (Id A) ⟨$⟩ xs ≈ xs + map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id + +opaque + unfolding mapₛ + + Multiset-homo + : (f : A ⟶ₛ B) + (g : B ⟶ₛ C) + → (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ C)) + → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs) + Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ + +opaque + unfolding mapₛ + + Multiset-resp-≈ + : (f g : A ⟶ₛ B) + → (let open Setoid (A ⇒ₛ B) in f ≈ g) + → (let open Setoid (Multisetₛ A ⇒ₛ Multisetₛ B) in mapₛ f ≈ mapₛ g) + Multiset-resp-≈ {A} {B} f g f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g)) + +Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) +Multiset .F₀ = Multisetₛ +Multiset .F₁ = mapₛ +Multiset .identity {A} {xs} = map-id {A} xs +Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs +Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = Multiset-resp-≈ f g f≈g + +module Multiset = Functor Multiset |
