diff options
Diffstat (limited to 'Functor/Instance/Multiset.agda')
| -rw-r--r-- | Functor/Instance/Multiset.agda | 60 |
1 files changed, 36 insertions, 24 deletions
diff --git a/Functor/Instance/Multiset.agda b/Functor/Instance/Multiset.agda index 0adb1df..b961c7b 100644 --- a/Functor/Instance/Multiset.agda +++ b/Functor/Instance/Multiset.agda @@ -4,18 +4,20 @@ open import Level using (Level; _⊔_) module Functor.Instance.Multiset {c ℓ : Level} where -import Data.List as List +import Data.Opaque.List as L import Data.List.Properties as ListProps import Data.List.Relation.Binary.Pointwise as PW -open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) -open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) - open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) -open import Data.Setoid using (∣_∣) +open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) +open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) +open import Data.Opaque.Multiset using (Multisetₛ; mapₛ) +open import Data.Setoid using (∣_∣; _⇒ₛ_) open import Function.Base using (_∘_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (_∙_) open import Relation.Binary using (Setoid) open Functor @@ -29,32 +31,42 @@ private -- the Multiset functor takes a carrier A to lists of A -- and the equivalence on A to permutation equivalence on lists of A -Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ) -Multisetₛ x = ↭-setoid x - -- Multiset on morphisms applies the same function to every element of a multiset -mapₛ : A ⟶ₛ B → Multisetₛ A ⟶ₛ Multisetₛ B -mapₛ f .to = List.map (to f) -mapₛ {A} {B} f .cong = map⁺ A B (cong f) +opaque + unfolding mapₛ + + map-id + : (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ A)) + → mapₛ (Id A) ⟨$⟩ xs ≈ xs + map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id + +opaque + unfolding mapₛ -map-id - : (xs : ∣ Multisetₛ A ∣) - → (open Setoid (Multisetₛ A)) - → List.map id xs ≈ xs -map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id + Multiset-homo + : (f : A ⟶ₛ B) + (g : B ⟶ₛ C) + → (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ C)) + → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs) + Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ -Multiset-homo - : (f : A ⟶ₛ B) - (g : B ⟶ₛ C) - → (xs : ∣ Multisetₛ A ∣) - → (open Setoid (Multisetₛ C)) - → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs) -Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ +opaque + unfolding mapₛ + + Multiset-resp-≈ + : (f g : A ⟶ₛ B) + → (let open Setoid (A ⇒ₛ B) in f ≈ g) + → (let open Setoid (Multisetₛ A ⇒ₛ Multisetₛ B) in mapₛ f ≈ mapₛ g) + Multiset-resp-≈ {A} {B} f g f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g)) Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) Multiset .F₀ = Multisetₛ Multiset .F₁ = mapₛ Multiset .identity {A} {xs} = map-id {A} xs Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs -Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g)) +Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = Multiset-resp-≈ f g f≈g + +module Multiset = Functor Multiset |
