diff options
Diffstat (limited to 'Functor/Instance/Nat/Edge.agda')
| -rw-r--r-- | Functor/Instance/Nat/Edge.agda | 60 |
1 files changed, 60 insertions, 0 deletions
diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda new file mode 100644 index 0000000..c69a1db --- /dev/null +++ b/Functor/Instance/Nat/Edge.agda @@ -0,0 +1,60 @@ +{-# OPTIONS --without-K --safe #-} + +open import Data.Hypergraph.Label using (HypergraphLabel) +open import Level using (Level; 0ℓ) + +module Functor.Instance.Nat.Edge {ℓ : Level} (HL : HypergraphLabel) where + +import Data.Vec as Vec +import Data.Vec.Properties as VecProps + +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Functor using (Functor) +open import Data.Fin using (Fin) +open import Data.Fin.Properties using (cast-is-id) +open import Data.Hypergraph.Edge {ℓ} HL as Edge using (Edgeₛ; map; mapₛ; _≈_) +open import Data.Nat using (ℕ) +open import Data.Vec.Relation.Binary.Equality.Cast using (≈-reflexive) +open import Function using (id; _∘_; Func; _⟶ₛ_) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_) + +module HL = HypergraphLabel HL + +open Edge.Edge +open Edge._≈_ +open Func +open Functor + +map-id : {v : ℕ} {e : Edge.Edge v} → map id e ≈ e +map-id .≡arity = ≡.refl +map-id .≡label = HL.≈-reflexive ≡.refl +map-id {_} {e} .≡ports = ≡.cong (ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl + +map-∘ + : {n m o : ℕ} + (f : Fin n → Fin m) + (g : Fin m → Fin o) + {e : Edge.Edge n} + → map (g ∘ f) e ≈ map g (map f e) +map-∘ f g .≡arity = ≡.refl +map-∘ f g .≡label = HL.≈-reflexive ≡.refl +map-∘ f g {e} .≡ports = ≡.cong (g ∘ f ∘ ports e) ∘ ≡.sym ∘ cast-is-id ≡.refl + +map-resp-≗ + : {n m : ℕ} + {f g : Fin n → Fin m} + → f ≗ g + → {e : Edge.Edge n} + → map f e ≈ map g e +map-resp-≗ f≗g .≡arity = ≡.refl +map-resp-≗ f≗g .≡label = HL.≈-reflexive ≡.refl +map-resp-≗ {g = g} f≗g {e} .≡ports i = ≡.trans (f≗g (ports e i)) (≡.cong (g ∘ ports e) (≡.sym (cast-is-id ≡.refl i))) + +Edge : Functor Nat (Setoids ℓ ℓ) +Edge .F₀ = Edgeₛ +Edge .F₁ = mapₛ +Edge .identity = map-id +Edge .homomorphism {f = f} {g} = map-∘ f g +Edge .F-resp-≈ = map-resp-≗ |
