diff options
Diffstat (limited to 'Functor/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Instance/Nat/Pull.agda | 81 |
1 files changed, 81 insertions, 0 deletions
diff --git a/Functor/Instance/Nat/Pull.agda b/Functor/Instance/Nat/Pull.agda new file mode 100644 index 0000000..b1764d9 --- /dev/null +++ b/Functor/Instance/Nat/Pull.agda @@ -0,0 +1,81 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Instance.Nat.Pull where + +open import Categories.Category.Instance.Nat using (Natop) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Functor using (Functor) +open import Data.Fin.Base using (Fin) +open import Data.Nat.Base using (ℕ) +open import Function.Base using (id; _∘_) +open import Function.Bundles using (Func; _⟶ₛ_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (setoid; _∙_) +open import Level using (0ℓ) +open import Relation.Binary using (Rel; Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) +open import Data.Circuit.Value using (Monoid) +open import Data.System.Values Monoid using (Values) +open import Data.Unit using (⊤; tt) + +open Functor +open Func + +-- Pull takes a natural number n to the setoid Values n + +private + + variable A B C : ℕ + + _≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ + _≈_ {X} {Y} = Setoid._≈_ (setoid X Y) + + infixr 4 _≈_ + + opaque + + unfolding Values + + -- action of Pull on morphisms (contravariant) + Pull₁ : (Fin A → Fin B) → Values B ⟶ₛ Values A + to (Pull₁ f) i = i ∘ f + cong (Pull₁ f) x≗y = x≗y ∘ f + + -- Pull respects identity + Pull-identity : Pull₁ id ≈ Id (Values A) + Pull-identity {A} = Setoid.refl (Values A) + + opaque + + unfolding Pull₁ + + -- Pull flips composition + Pull-homomorphism + : (f : Fin A → Fin B) + (g : Fin B → Fin C) + → Pull₁ (g ∘ f) ≈ Pull₁ f ∙ Pull₁ g + Pull-homomorphism {A} _ _ = Setoid.refl (Values A) + + -- Pull respects equality + Pull-resp-≈ + : {f g : Fin A → Fin B} + → f ≗ g + → Pull₁ f ≈ Pull₁ g + Pull-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g + +opaque + + unfolding Pull₁ + + Pull-defs : ⊤ + Pull-defs = tt + +-- the Pull functor +Pull : Functor Natop (Setoids 0ℓ 0ℓ) +F₀ Pull = Values +F₁ Pull = Pull₁ +identity Pull = Pull-identity +homomorphism Pull {f = f} {g} = Pull-homomorphism g f +F-resp-≈ Pull = Pull-resp-≈ + +module Pull = Functor Pull |
