diff options
Diffstat (limited to 'Functor/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Instance/Nat/Pull.agda | 63 |
1 files changed, 63 insertions, 0 deletions
diff --git a/Functor/Instance/Nat/Pull.agda b/Functor/Instance/Nat/Pull.agda new file mode 100644 index 0000000..5b74399 --- /dev/null +++ b/Functor/Instance/Nat/Pull.agda @@ -0,0 +1,63 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Instance.Nat.Pull where + +open import Categories.Category.Instance.Nat using (Natop) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Functor using (Functor) +open import Data.Fin.Base using (Fin) +open import Data.Nat.Base using (ℕ) +open import Function.Base using (id; _∘_) +open import Function.Bundles using (Func; _⟶ₛ_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (setoid; _∙_) +open import Level using (0ℓ) +open import Relation.Binary using (Rel; Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) +open import Data.Circuit.Value using (Value) +open import Data.System.Values Value using (Values) + +open Functor +open Func + +_≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ +_≈_ {X} {Y} = Setoid._≈_ (setoid X Y) +infixr 4 _≈_ + +private + variable A B C : ℕ + + +-- action on objects is Values n (Vector Value n) + +-- action of Pull on morphisms (contravariant) +Pull₁ : (Fin A → Fin B) → Values B ⟶ₛ Values A +to (Pull₁ f) i = i ∘ f +cong (Pull₁ f) x≗y = x≗y ∘ f + +-- Pull respects identity +Pull-identity : Pull₁ id ≈ Id (Values A) +Pull-identity {A} = Setoid.refl (Values A) + +-- Pull flips composition +Pull-homomorphism + : {A B C : ℕ} + (f : Fin A → Fin B) + (g : Fin B → Fin C) + → Pull₁ (g ∘ f) ≈ Pull₁ f ∙ Pull₁ g +Pull-homomorphism {A} _ _ = Setoid.refl (Values A) + +-- Pull respects equality +Pull-resp-≈ + : {f g : Fin A → Fin B} + → f ≗ g + → Pull₁ f ≈ Pull₁ g +Pull-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g + +-- the Pull functor +Pull : Functor Natop (Setoids 0ℓ 0ℓ) +F₀ Pull = Values +F₁ Pull = Pull₁ +identity Pull = Pull-identity +homomorphism Pull {f = f} {g} {v} = Pull-homomorphism g f {v} +F-resp-≈ Pull = Pull-resp-≈ |
