aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/Pull.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/Nat/Pull.agda')
-rw-r--r--Functor/Instance/Nat/Pull.agda16
1 files changed, 6 insertions, 10 deletions
diff --git a/Functor/Instance/Nat/Pull.agda b/Functor/Instance/Nat/Pull.agda
index cf15809..5b74399 100644
--- a/Functor/Instance/Nat/Pull.agda
+++ b/Functor/Instance/Nat/Pull.agda
@@ -2,29 +2,24 @@
module Functor.Instance.Nat.Pull where
-open import Categories.Category.Core using (module Category)
-open import Categories.Category.Instance.Nat using (Nat)
+open import Categories.Category.Instance.Nat using (Natop)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor using (Functor)
-open import Data.Circuit.Merge using (merge; merge-cong₁; merge-cong₂; merge-⁅⁆; merge-preimage)
open import Data.Fin.Base using (Fin)
-open import Data.Fin.Preimage using (preimage; preimage-cong₁)
open import Data.Nat.Base using (ℕ)
-open import Data.Subset.Functional using (⁅_⁆)
-open import Function.Base using (id; flip; _∘_)
+open import Function.Base using (id; _∘_)
open import Function.Bundles using (Func; _⟶ₛ_)
open import Function.Construct.Identity using () renaming (function to Id)
open import Function.Construct.Setoid using (setoid; _∙_)
open import Level using (0ℓ)
open import Relation.Binary using (Rel; Setoid)
open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
-open import Data.System using (Values)
+open import Data.Circuit.Value using (Value)
+open import Data.System.Values Value using (Values)
open Functor
open Func
-module Nat = Category Nat
-
_≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ
_≈_ {X} {Y} = Setoid._≈_ (setoid X Y)
infixr 4 _≈_
@@ -32,6 +27,7 @@ infixr 4 _≈_
private
variable A B C : ℕ
+
-- action on objects is Values n (Vector Value n)
-- action of Pull on morphisms (contravariant)
@@ -59,7 +55,7 @@ Pull-resp-≈
Pull-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g
-- the Pull functor
-Pull : Functor Nat.op (Setoids 0ℓ 0ℓ)
+Pull : Functor Natop (Setoids 0ℓ 0ℓ)
F₀ Pull = Values
F₁ Pull = Pull₁
identity Pull = Pull-identity