diff options
Diffstat (limited to 'Functor/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Instance/Nat/Pull.agda | 16 |
1 files changed, 6 insertions, 10 deletions
diff --git a/Functor/Instance/Nat/Pull.agda b/Functor/Instance/Nat/Pull.agda index cf15809..5b74399 100644 --- a/Functor/Instance/Nat/Pull.agda +++ b/Functor/Instance/Nat/Pull.agda @@ -2,29 +2,24 @@ module Functor.Instance.Nat.Pull where -open import Categories.Category.Core using (module Category) -open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Nat using (Natop) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) -open import Data.Circuit.Merge using (merge; merge-cong₁; merge-cong₂; merge-⁅⁆; merge-preimage) open import Data.Fin.Base using (Fin) -open import Data.Fin.Preimage using (preimage; preimage-cong₁) open import Data.Nat.Base using (ℕ) -open import Data.Subset.Functional using (⁅_⁆) -open import Function.Base using (id; flip; _∘_) +open import Function.Base using (id; _∘_) open import Function.Bundles using (Func; _⟶ₛ_) open import Function.Construct.Identity using () renaming (function to Id) open import Function.Construct.Setoid using (setoid; _∙_) open import Level using (0ℓ) open import Relation.Binary using (Rel; Setoid) open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) -open import Data.System using (Values) +open import Data.Circuit.Value using (Value) +open import Data.System.Values Value using (Values) open Functor open Func -module Nat = Category Nat - _≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ _≈_ {X} {Y} = Setoid._≈_ (setoid X Y) infixr 4 _≈_ @@ -32,6 +27,7 @@ infixr 4 _≈_ private variable A B C : ℕ + -- action on objects is Values n (Vector Value n) -- action of Pull on morphisms (contravariant) @@ -59,7 +55,7 @@ Pull-resp-≈ Pull-resp-≈ f≗g {v} = ≡.cong v ∘ f≗g -- the Pull functor -Pull : Functor Nat.op (Setoids 0ℓ 0ℓ) +Pull : Functor Natop (Setoids 0ℓ 0ℓ) F₀ Pull = Values F₁ Pull = Pull₁ identity Pull = Pull-identity |
