diff options
Diffstat (limited to 'Functor/Instance/Nat/Push.agda')
| -rw-r--r-- | Functor/Instance/Nat/Push.agda | 64 |
1 files changed, 64 insertions, 0 deletions
diff --git a/Functor/Instance/Nat/Push.agda b/Functor/Instance/Nat/Push.agda new file mode 100644 index 0000000..53d0bef --- /dev/null +++ b/Functor/Instance/Nat/Push.agda @@ -0,0 +1,64 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Instance.Nat.Push where + +open import Categories.Functor using (Functor) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Data.Circuit.Merge using (merge; merge-cong₁; merge-cong₂; merge-⁅⁆; merge-preimage) +open import Data.Fin.Base using (Fin) +open import Data.Fin.Preimage using (preimage; preimage-cong₁) +open import Data.Nat.Base using (ℕ) +open import Data.Subset.Functional using (⁅_⁆) +open import Function.Base using (id; _∘_) +open import Function.Bundles using (Func; _⟶ₛ_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (setoid; _∙_) +open import Level using (0ℓ) +open import Relation.Binary using (Rel; Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≗_) +open import Data.Circuit.Value using (Value) +open import Data.System.Values Value using (Values) + +open Func +open Functor + +private + variable A B C : ℕ + +_≈_ : {X Y : Setoid 0ℓ 0ℓ} → Rel (X ⟶ₛ Y) 0ℓ +_≈_ {X} {Y} = Setoid._≈_ (setoid X Y) +infixr 4 _≈_ + +-- action of Push on objects is Values n (Vector Value n) + +-- action of Push on morphisms (covariant) +Push₁ : (Fin A → Fin B) → Values A ⟶ₛ Values B +to (Push₁ f) v = merge v ∘ preimage f ∘ ⁅_⁆ +cong (Push₁ f) x≗y = merge-cong₁ x≗y ∘ preimage f ∘ ⁅_⁆ + +-- Push respects identity +Push-identity : Push₁ id ≈ Id (Values A) +Push-identity {_} {v} = merge-⁅⁆ v + +-- Push respects composition +Push-homomorphism + : {f : Fin A → Fin B} + {g : Fin B → Fin C} + → Push₁ (g ∘ f) ≈ Push₁ g ∙ Push₁ f +Push-homomorphism {f = f} {g} {v} = merge-preimage f v ∘ preimage g ∘ ⁅_⁆ + +-- Push respects equality +Push-resp-≈ + : {f g : Fin A → Fin B} + → f ≗ g + → Push₁ f ≈ Push₁ g +Push-resp-≈ f≗g {v} = merge-cong₂ v ∘ preimage-cong₁ f≗g ∘ ⁅_⁆ + +-- the Push functor +Push : Functor Nat (Setoids 0ℓ 0ℓ) +F₀ Push = Values +F₁ Push = Push₁ +identity Push = Push-identity +homomorphism Push = Push-homomorphism +F-resp-≈ Push = Push-resp-≈ |
