aboutsummaryrefslogtreecommitdiff
path: root/Functor/Instance/Nat/System.agda
diff options
context:
space:
mode:
Diffstat (limited to 'Functor/Instance/Nat/System.agda')
-rw-r--r--Functor/Instance/Nat/System.agda10
1 files changed, 5 insertions, 5 deletions
diff --git a/Functor/Instance/Nat/System.agda b/Functor/Instance/Nat/System.agda
index 730f90d..00451ad 100644
--- a/Functor/Instance/Nat/System.agda
+++ b/Functor/Instance/Nat/System.agda
@@ -1,7 +1,8 @@
{-# OPTIONS --without-K --safe #-}
-module Functor.Instance.Nat.System {ℓ} where
+module Functor.Instance.Nat.System where
+open import Level using (suc; 0ℓ)
open import Categories.Category.Instance.Nat using (Nat)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Functor.Core using (Functor)
@@ -9,14 +10,13 @@ open import Data.Circuit.Value using (Value)
open import Data.Fin.Base using (Fin)
open import Data.Nat.Base using (ℕ)
open import Data.Product.Base using (_,_; _×_)
-open import Data.System using (System; ≤-System; Systemₛ)
+open import Data.System {suc 0ℓ} using (System; ≤-System; Systemₛ)
open import Data.System.Values Value using (module ≋)
open import Function.Bundles using (Func; _⟶ₛ_)
open import Function.Base using (id; _∘_)
open import Function.Construct.Setoid using (_∙_)
open import Functor.Instance.Nat.Pull using (Pull₁; Pull-resp-≈)
open import Functor.Instance.Nat.Push using (Push₁; Push-identity; Push-homomorphism; Push-resp-≈)
-open import Level using (suc)
open import Relation.Binary.PropositionalEquality as ≡ using (_≗_)
-- import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
@@ -29,7 +29,7 @@ open Functor
private
variable A B C : ℕ
-map : (Fin A → Fin B) → System {ℓ} A → System B
+map : (Fin A → Fin B) → System A → System B
map f X = record
{ S = S
; fₛ = fₛ ∙ Pull₁ f
@@ -88,7 +88,7 @@ System-resp-≈ {A} {B} {f = f} {g} f≗g {X} = both f≗g , both (≡.sym ∘ f
both f≗g .≗-fₛ i s = cong fₛ (Pull-resp-≈ f≗g {i})
both {f} {g} f≗g .≗-fₒ s = Push-resp-≈ f≗g
-Sys : Functor Nat (Setoids (suc ℓ) ℓ)
+Sys : Functor Nat (Setoids (suc 0ℓ) (suc 0ℓ))
Sys .F₀ = Systemₛ
Sys .F₁ = System₁
Sys .identity = id-x≤x , x≤id-x