diff options
Diffstat (limited to 'Functor/Instance')
| -rw-r--r-- | Functor/Instance/FreeMonoid.agda | 64 | ||||
| -rw-r--r-- | Functor/Instance/List.agda | 14 | ||||
| -rw-r--r-- | Functor/Instance/Nat/Circ.agda | 32 | ||||
| -rw-r--r-- | Functor/Instance/Nat/Edge.agda | 5 | 
4 files changed, 106 insertions, 9 deletions
| diff --git a/Functor/Instance/FreeMonoid.agda b/Functor/Instance/FreeMonoid.agda new file mode 100644 index 0000000..bb26fd4 --- /dev/null +++ b/Functor/Instance/FreeMonoid.agda @@ -0,0 +1,64 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; _⊔_) + +module Functor.Instance.FreeMonoid {c ℓ : Level} where + +import Categories.Object.Monoid as MonoidObject + +open import Categories.Category.Construction.Monoids using (Monoids) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Functor using (Functor) +open import Categories.NaturalTransformation using (NaturalTransformation) +open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×) +open import Data.List.Properties using (++-assoc; ++-identityˡ; ++-identityʳ) +open import Data.Product using (_,_) +open import Function using (_⟶ₛ_) +open import Functor.Instance.List {c} {ℓ} using (List) +open import NaturalTransformation.Instance.EmptyList {c} {ℓ} using (⊤⇒[]) +open import NaturalTransformation.Instance.ListAppend {c} {ℓ} using (++) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) + +module List = Functor List +module Setoids-× = SymmetricMonoidalCategory Setoids-× +module ++ = NaturalTransformation ++ +module ⊤⇒[] = NaturalTransformation ⊤⇒[] + +open Functor +open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) +open IsMonoid + +module _ (X : Setoid c ℓ) where + +  private +    module X = Setoid X +    module ListX = Setoid (List.₀ X) + +  ListMonoid : IsMonoid (List.₀ X) +  ListMonoid .μ = ++.η X +  ListMonoid .η = ⊤⇒[].η X +  ListMonoid .assoc {(x , y) , z} = ListX.reflexive (++-assoc x y z) +  ListMonoid .identityˡ {_ , x} = ListX.reflexive (++-identityˡ x) +  ListMonoid .identityʳ {x , _} = ListX.reflexive (≡.sym (++-identityʳ x)) + +FreeMonoid₀ : (X : Setoid c ℓ) → Monoid +FreeMonoid₀ X = record { isMonoid = ListMonoid X } + +FreeMonoid₁ +    : {A B : Setoid c ℓ} +      (f : A ⟶ₛ B) +    → Monoid⇒ (FreeMonoid₀ A) (FreeMonoid₀ B) +FreeMonoid₁ f = record +    { arr = List.₁ f +    ; preserves-μ = λ {x,y} → ++.sym-commute f {x,y} +    ; preserves-η = ⊤⇒[].commute f +    } + +FreeMonoid : Functor (Setoids c ℓ) (Monoids Setoids-×.monoidal) +FreeMonoid .F₀ = FreeMonoid₀ +FreeMonoid .F₁ = FreeMonoid₁ +FreeMonoid .identity {X} = List.identity {X} +FreeMonoid .homomorphism {X} {Y} {Z} {f} {g} = List.homomorphism {X} {Y} {Z} {f} {g} +FreeMonoid .F-resp-≈ {A} {B} {f} {g} = List.F-resp-≈ {A} {B} {f} {g} diff --git a/Functor/Instance/List.agda b/Functor/Instance/List.agda index 05db349..b40670d 100644 --- a/Functor/Instance/List.agda +++ b/Functor/Instance/List.agda @@ -16,7 +16,7 @@ open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_)  open import Relation.Binary using (Setoid)  open Functor -open Setoid +open Setoid using (reflexive)  open Func  private @@ -36,15 +36,19 @@ mapₛ : A ⟶ₛ B → Listₛ A ⟶ₛ Listₛ B  mapₛ f .to = List.map (to f)  mapₛ f .cong = PW.map⁺ (to f) (to f) ∘ PW.map (cong f) -map-id : (xs : ∣ Listₛ A ∣) → PW.Pointwise (_≈_ A) (List.map id xs) xs -map-id {A} = PW.map (reflexive A) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-id +map-id +    : (xs : ∣ Listₛ A ∣) +    → (open Setoid (Listₛ A)) +    → List.map id xs ≈ xs +map-id {A} = reflexive (Listₛ A) ∘ ListProps.map-id  List-homo      : (f : A ⟶ₛ B)        (g : B ⟶ₛ C)      → (xs : ∣ Listₛ A ∣) -    → PW.Pointwise (_≈_ C) (List.map (to g ∘ to f) xs) (List.map (to g) (List.map (to f) xs)) -List-homo {C = C} f g = PW.map (reflexive C) ∘ PW.≡⇒Pointwise-≡ ∘ ListProps.map-∘ +    → (open Setoid (Listₛ C)) +    → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs) +List-homo {C = C} f g = reflexive (Listₛ C) ∘ ListProps.map-∘  List : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ))  List .F₀ = Listₛ diff --git a/Functor/Instance/Nat/Circ.agda b/Functor/Instance/Nat/Circ.agda new file mode 100644 index 0000000..0f18c4c --- /dev/null +++ b/Functor/Instance/Nat/Circ.agda @@ -0,0 +1,32 @@ +{-# OPTIONS --without-K --safe #-} + +open import Level using (Level; _⊔_; 0ℓ) + +module Functor.Instance.Nat.Circ {c ℓ : Level} where + +open import Data.Circuit {c} {ℓ} using (Circuitₛ; mapₛ; mkCircuitₛ) +open import Data.Nat using (ℕ) +open import Relation.Binary using (Setoid) +open import Function using (Func) +open import Categories.Functor using (Functor; _∘F_) +open import Categories.Category.Instance.Setoids using (Setoids) +open import Categories.Category.Instance.Nat using (Nat) +open import Data.Fin using (Fin) +open import Data.Circuit.Gate using (Gates) +open import Functor.Instance.Nat.Edge Gates using (Edge) +open import Functor.Instance.List using (List) + +List∘Edge : Functor Nat (Setoids 0ℓ 0ℓ) +List∘Edge = List ∘F Edge + +module List∘Edge = Functor List∘Edge + +open Func +open Functor + +Circ : Functor Nat (Setoids c (c ⊔ ℓ)) +Circ .F₀ = Circuitₛ +Circ .F₁ = mapₛ +Circ .identity = cong mkCircuitₛ List∘Edge.identity +Circ .homomorphism = cong mkCircuitₛ List∘Edge.homomorphism +Circ .F-resp-≈ f≗g = cong mkCircuitₛ (List∘Edge.F-resp-≈ f≗g) diff --git a/Functor/Instance/Nat/Edge.agda b/Functor/Instance/Nat/Edge.agda index ee54f2e..618807d 100644 --- a/Functor/Instance/Nat/Edge.agda +++ b/Functor/Instance/Nat/Edge.agda @@ -11,7 +11,7 @@ open import Categories.Category.Instance.Nat using (Nat)  open import Categories.Category.Instance.Setoids using (Setoids)  open import Categories.Functor using (Functor)  open import Data.Fin using (Fin) -open import Data.Hypergraph.Edge HL as Edge using (≈-Edge-IsEquivalence; map; ≈-Edge) +open import Data.Hypergraph.Edge HL as Edge using (≈-Edge-IsEquivalence; map; ≈-Edge; Edgeₛ)  open import Data.Nat using (ℕ)  open import Data.Vec.Relation.Binary.Equality.Cast using (≈-cong′; ≈-reflexive)  open import Level using (0ℓ) @@ -27,9 +27,6 @@ open Functor  open Setoid  open ≈-Edge -Edgeₛ : (v : ℕ) → Setoid 0ℓ 0ℓ -Edgeₛ v = record { isEquivalence = ≈-Edge-IsEquivalence {v} } -  Edge₁ : {n m : ℕ} → (Fin n → Fin m) → Edgeₛ n ⟶ₛ Edgeₛ m  Edge₁ f .to = map f  Edge₁ f .cong x≈y = record | 
