diff options
Diffstat (limited to 'Functor/Instance')
| -rw-r--r-- | Functor/Instance/FreeCMonoid.agda | 67 | ||||
| -rw-r--r-- | Functor/Instance/Multiset.agda | 60 |
2 files changed, 36 insertions, 91 deletions
diff --git a/Functor/Instance/FreeCMonoid.agda b/Functor/Instance/FreeCMonoid.agda deleted file mode 100644 index 1b241b7..0000000 --- a/Functor/Instance/FreeCMonoid.agda +++ /dev/null @@ -1,67 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -open import Level using (Level; _⊔_) - -module Functor.Instance.FreeCMonoid {c ℓ : Level} where - -import Categories.Object.Monoid as MonoidObject -import Object.Monoid.Commutative as CMonoidObject - -open import Categories.Category.Instance.Setoids using (Setoids) -open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) -open import Categories.Functor using (Functor) -open import Categories.NaturalTransformation using (NaturalTransformation) -open import Category.Construction.CMonoids using (CMonoids) -open import Category.Instance.Setoids.SymmetricMonoidal {c} {c ⊔ ℓ} using (Setoids-×) -open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (++-assoc; ++-identityˡ; ++-identityʳ; ++-comm) -open import Data.Product using (_,_) -open import Function using (_⟶ₛ_) -open import Functor.Instance.Multiset {c} {ℓ} using (Multiset) -open import NaturalTransformation.Instance.EmptyMultiset {c} {ℓ} using (⊤⇒[]) -open import NaturalTransformation.Instance.MultisetAppend {c} {ℓ} using (++) -open import Relation.Binary using (Setoid) - -module Multiset = Functor Multiset -module Setoids-× = SymmetricMonoidalCategory Setoids-× -module ++ = NaturalTransformation ++ -module ⊤⇒[] = NaturalTransformation ⊤⇒[] - -open Functor -open MonoidObject Setoids-×.monoidal using (Monoid; IsMonoid; Monoid⇒) -open CMonoidObject Setoids-×.symmetric using (CommutativeMonoid; IsCommutativeMonoid; CommutativeMonoid⇒) -open IsCommutativeMonoid -open IsMonoid -open CommutativeMonoid⇒ -open Monoid⇒ - -module _ (X : Setoid c ℓ) where - - private - module X = Setoid X - module MultisetX = Setoid (Multiset.₀ X) - - MultisetCMonoid : IsCommutativeMonoid (Multiset.₀ X) - MultisetCMonoid .isMonoid .μ = ++.η X - MultisetCMonoid .isMonoid .η = ⊤⇒[].η X - MultisetCMonoid .isMonoid .assoc {(x , y) , z} = ++-assoc X x y z - MultisetCMonoid .isMonoid .identityˡ {_ , x} = ++-identityˡ X x - MultisetCMonoid .isMonoid .identityʳ {x , _} = MultisetX.sym (++-identityʳ X x) - MultisetCMonoid .commutative {x , y} = ++-comm X x y - -FreeCMonoid₀ : (X : Setoid c ℓ) → CommutativeMonoid -FreeCMonoid₀ X = record { isCommutativeMonoid = MultisetCMonoid X } - -FreeCMonoid₁ - : {A B : Setoid c ℓ} - (f : A ⟶ₛ B) - → CommutativeMonoid⇒ (FreeCMonoid₀ A) (FreeCMonoid₀ B) -FreeCMonoid₁ f .monoid⇒ .arr = Multiset.₁ f -FreeCMonoid₁ f .monoid⇒ .preserves-μ {xy} = ++.sym-commute f {xy} -FreeCMonoid₁ f .monoid⇒ .preserves-η = ⊤⇒[].commute f - -FreeCMonoid : Functor (Setoids c ℓ) (CMonoids Setoids-×.symmetric) -FreeCMonoid .F₀ = FreeCMonoid₀ -FreeCMonoid .F₁ = FreeCMonoid₁ -FreeCMonoid .identity {X} = Multiset.identity {X} -FreeCMonoid .homomorphism {X} {Y} {Z} {f} {g} = Multiset.homomorphism {X} {Y} {Z} {f} {g} -FreeCMonoid .F-resp-≈ {A} {B} {f} {g} = Multiset.F-resp-≈ {A} {B} {f} {g} diff --git a/Functor/Instance/Multiset.agda b/Functor/Instance/Multiset.agda index 0adb1df..b961c7b 100644 --- a/Functor/Instance/Multiset.agda +++ b/Functor/Instance/Multiset.agda @@ -4,18 +4,20 @@ open import Level using (Level; _⊔_) module Functor.Instance.Multiset {c ℓ : Level} where -import Data.List as List +import Data.Opaque.List as L import Data.List.Properties as ListProps import Data.List.Relation.Binary.Pointwise as PW -open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) -open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) - open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Functor using (Functor) -open import Data.Setoid using (∣_∣) +open import Data.List.Relation.Binary.Permutation.Setoid using (↭-setoid; ↭-reflexive-≋) +open import Data.List.Relation.Binary.Permutation.Setoid.Properties using (map⁺) +open import Data.Opaque.Multiset using (Multisetₛ; mapₛ) +open import Data.Setoid using (∣_∣; _⇒ₛ_) open import Function.Base using (_∘_; id) open import Function.Bundles using (Func; _⟶ₛ_; _⟨$⟩_) +open import Function.Construct.Identity using () renaming (function to Id) +open import Function.Construct.Setoid using (_∙_) open import Relation.Binary using (Setoid) open Functor @@ -29,32 +31,42 @@ private -- the Multiset functor takes a carrier A to lists of A -- and the equivalence on A to permutation equivalence on lists of A -Multisetₛ : Setoid c ℓ → Setoid c (c ⊔ ℓ) -Multisetₛ x = ↭-setoid x - -- Multiset on morphisms applies the same function to every element of a multiset -mapₛ : A ⟶ₛ B → Multisetₛ A ⟶ₛ Multisetₛ B -mapₛ f .to = List.map (to f) -mapₛ {A} {B} f .cong = map⁺ A B (cong f) +opaque + unfolding mapₛ + + map-id + : (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ A)) + → mapₛ (Id A) ⟨$⟩ xs ≈ xs + map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id + +opaque + unfolding mapₛ -map-id - : (xs : ∣ Multisetₛ A ∣) - → (open Setoid (Multisetₛ A)) - → List.map id xs ≈ xs -map-id {A} = reflexive (Multisetₛ A) ∘ ListProps.map-id + Multiset-homo + : (f : A ⟶ₛ B) + (g : B ⟶ₛ C) + → (xs : ∣ Multisetₛ A ∣) + → (open Setoid (Multisetₛ C)) + → mapₛ (g ∙ f) ⟨$⟩ xs ≈ mapₛ g ⟨$⟩ (mapₛ f ⟨$⟩ xs) + Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ -Multiset-homo - : (f : A ⟶ₛ B) - (g : B ⟶ₛ C) - → (xs : ∣ Multisetₛ A ∣) - → (open Setoid (Multisetₛ C)) - → List.map (to g ∘ to f) xs ≈ List.map (to g) (List.map (to f) xs) -Multiset-homo {C = C} f g = reflexive (Multisetₛ C) ∘ ListProps.map-∘ +opaque + unfolding mapₛ + + Multiset-resp-≈ + : (f g : A ⟶ₛ B) + → (let open Setoid (A ⇒ₛ B) in f ≈ g) + → (let open Setoid (Multisetₛ A ⇒ₛ Multisetₛ B) in mapₛ f ≈ mapₛ g) + Multiset-resp-≈ {A} {B} f g f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g)) Multiset : Functor (Setoids c ℓ) (Setoids c (c ⊔ ℓ)) Multiset .F₀ = Multisetₛ Multiset .F₁ = mapₛ Multiset .identity {A} {xs} = map-id {A} xs Multiset .homomorphism {f = f} {g} {xs} = Multiset-homo f g xs -Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = ↭-reflexive-≋ B (PW.map⁺ (to f) (to g) (PW.refl f≈g)) +Multiset .F-resp-≈ {A} {B} {f} {g} f≈g = Multiset-resp-≈ f g f≈g + +module Multiset = Functor Multiset |
