diff options
Diffstat (limited to 'Functor/Monoidal/Instance/Nat/Pull.agda')
| -rw-r--r-- | Functor/Monoidal/Instance/Nat/Pull.agda | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/Functor/Monoidal/Instance/Nat/Pull.agda b/Functor/Monoidal/Instance/Nat/Pull.agda new file mode 100644 index 0000000..b267f97 --- /dev/null +++ b/Functor/Monoidal/Instance/Nat/Pull.agda @@ -0,0 +1,166 @@ +{-# OPTIONS --without-K --safe #-} + +module Functor.Monoidal.Instance.Nat.Pull where + +import Categories.Morphism as Morphism + +open import Level using (0ℓ; Level) + +open import Category.Instance.Setoids.SymmetricMonoidal {0ℓ} {0ℓ} using (Setoids-×) +open import Category.Monoidal.Instance.Nat using (Natop,+,0; Natop-Cartesian) + +open import Categories.Category.BinaryProducts using (module BinaryProducts) +open import Categories.Category.Cartesian using (Cartesian) +open import Categories.Category.Cocartesian using (Cocartesian; BinaryCoproducts) +open import Categories.Category.Instance.Nat using (Nat) +open import Categories.Category.Instance.Nat using (Nat-Cocartesian) +open import Data.Setoid.Unit using (⊤ₛ) +open import Categories.Category.Monoidal.Bundle using (SymmetricMonoidalCategory) +open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) +open import Categories.Category.Product using (_⁂_) +open import Categories.Functor using (_∘F_) +open import Categories.Functor.Monoidal.Symmetric Natop,+,0 Setoids-× using (module Strong) +open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) +open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; niHelper) +open import Data.Circuit.Value using (Monoid) +open import Data.Vector using (++-assoc) +open import Data.Fin.Base using (Fin; splitAt; join) +open import Data.Fin.Permutation using (Permutation; _⟨$⟩ʳ_; _⟨$⟩ˡ_) +open import Data.Fin.Preimage using (preimage) +open import Data.Fin.Properties using (splitAt-join; splitAt-↑ˡ; splitAt-↑ʳ; join-splitAt) +open import Data.Nat.Base using (ℕ; _+_) +open import Data.Product.Base using (_,_; _×_; Σ; proj₁; proj₂) +open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_) +open import Data.Setoid using (∣_∣) +open import Data.Subset.Functional using (Subset) +open import Data.Sum.Base using ([_,_]′; map; map₁; map₂; inj₁; inj₂) +open import Data.Sum.Properties using ([,]-map; [,]-cong; [-,]-cong; [,-]-cong; [,]-∘) +open import Data.System.Values Monoid using (Values; <ε>; []-unique; _++_; ++ₛ; splitₛ; _≋_; []) +open import Data.Unit.Polymorphic using (tt) +open import Function using (Func; _⟶ₛ_; _⟨$⟩_; _∘_) +open import Function.Construct.Constant using () renaming (function to Const) +open import Functor.Instance.Nat.Pull using (Pull; Pull-defs) +open import Relation.Binary using (Setoid) +open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; _≗_; module ≡-Reasoning) + +open Cartesian (Setoids-Cartesian {0ℓ} {0ℓ}) using (products) + +open BinaryProducts products using (-×-) +open Cocartesian Nat-Cocartesian using (module Dual; _+₁_; +-assocʳ; +-comm; +-swap; +₁∘+-swap; i₁; i₂) +open Dual.op-binaryProducts using () renaming (-×- to -+-; assocˡ∘⟨⟩ to []∘assocʳ; swap∘⟨⟩ to []∘swap) +open Func +open Morphism (Setoids-×.U) using (_≅_; module Iso) +open Strong using (SymmetricMonoidalFunctor) +open ≡-Reasoning + +private + + open _≅_ + open Iso + + Pull-ε : ⊤ₛ ≅ Values 0 + from Pull-ε = Const ⊤ₛ (Values 0) [] + to Pull-ε = Const (Values 0) ⊤ₛ tt + isoˡ (iso Pull-ε) = tt + isoʳ (iso Pull-ε) {x} = []-unique [] x + + opaque + unfolding _++_ + unfolding Pull-defs + Pull-++ + : {n n′ m m′ : ℕ} + (f : Fin n → Fin n′) + (g : Fin m → Fin m′) + {xs : ∣ Values n′ ∣} + {ys : ∣ Values m′ ∣} + → (Pull.₁ f ⟨$⟩ xs) ++ (Pull.₁ g ⟨$⟩ ys) ≋ Pull.₁ (f +₁ g) ⟨$⟩ (xs ++ ys) + Pull-++ {n} {n′} {m} {m′} f g {xs} {ys} e = begin + (xs ∘ f ++ ys ∘ g) e ≡⟨ [,]-map (splitAt n e) ⟨ + [ xs , ys ]′ (map f g (splitAt n e)) ≡⟨ ≡.cong [ xs , ys ]′ (splitAt-join n′ m′ (map f g (splitAt n e))) ⟨ + (xs ++ ys) (join n′ m′ (map f g (splitAt n e))) ≡⟨ ≡.cong (xs ++ ys) ([,]-map (splitAt n e)) ⟩ + (xs ++ ys) ((f +₁ g) e) ∎ + + module _ {n m : ℕ} where + + opaque + unfolding splitₛ + + open import Function.Construct.Setoid using (setoid) + open module ⇒ₛ {A} {B} = Setoid (setoid {0ℓ} {0ℓ} {0ℓ} {0ℓ} A B) using (_≈_) + open import Function.Construct.Setoid using (_∙_) + open import Function.Construct.Identity using () renaming (function to Id) + + split∘++ : splitₛ ∙ ++ₛ ≈ Id (Values n ×ₛ Values m) + split∘++ {xs , ys} .proj₁ i = ≡.cong [ xs , ys ]′ (splitAt-↑ˡ n i m) + split∘++ {xs , ys} .proj₂ i = ≡.cong [ xs , ys ]′ (splitAt-↑ʳ n m i) + + ++∘split : ++ₛ {n} ∙ splitₛ ≈ Id (Values (n + m)) + ++∘split {x} i = ≡.trans (≡.sym ([,]-∘ x (splitAt n i))) (≡.cong x (join-splitAt n m i)) + + ⊗-homomorphism : NaturalIsomorphism (-×- ∘F (Pull ⁂ Pull)) (Pull ∘F -+-) + ⊗-homomorphism = niHelper record + { η = λ (n , m) → ++ₛ {n} {m} + ; η⁻¹ = λ (n , m) → splitₛ {n} {m} + ; commute = λ { {n , m} {n′ , m′} (f , g) {xs , ys} → Pull-++ f g } + ; iso = λ (n , m) → record + { isoˡ = split∘++ + ; isoʳ = ++∘split + } + } + + module _ {n m : ℕ} where + + opaque + unfolding Pull-++ + + Pull-i₁ + : (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ i₁ ⟨$⟩ (X ++ Y) ≋ X + Pull-i₁ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ˡ n i m) + + Pull-i₂ + : (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ i₂ ⟨$⟩ (X ++ Y) ≋ Y + Pull-i₂ X Y i = ≡.cong [ X , Y ]′ (splitAt-↑ʳ n m i) + + opaque + unfolding Pull-++ + + Push-assoc + : {m n o : ℕ} + (X : ∣ Values m ∣) + (Y : ∣ Values n ∣) + (Z : ∣ Values o ∣) + → Pull.₁ (+-assocʳ {m} {n} {o}) ⟨$⟩ ((X ++ Y) ++ Z) ≋ X ++ (Y ++ Z) + Push-assoc {m} {n} {o} X Y Z i = ++-assoc X Y Z i + + Pull-swap + : {n m : ℕ} + (X : ∣ Values n ∣) + (Y : ∣ Values m ∣) + → Pull.₁ (+-swap {n}) ⟨$⟩ (X ++ Y) ≋ Y ++ X + Pull-swap {n} {m} X Y i = begin + ((X ++ Y) ∘ +-swap {n}) i ≡⟨ [,]-∘ (X ++ Y) (splitAt m i) ⟩ + [ (X ++ Y) ∘ i₂ , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [-,]-cong (Pull-i₂ X Y) (splitAt m i) ⟩ + [ Y , (X ++ Y) ∘ i₁ ]′ (splitAt m i) ≡⟨ [,-]-cong (Pull-i₁ X Y) (splitAt m i) ⟩ + [ Y , X ]′ (splitAt m i) ≡⟨⟩ + (Y ++ X) i ∎ + +open SymmetricMonoidalFunctor + +Pull,++,[] : SymmetricMonoidalFunctor +Pull,++,[] .F = Pull +Pull,++,[] .isBraidedMonoidal = record + { isStrongMonoidal = record + { ε = Pull-ε + ; ⊗-homo = ⊗-homomorphism + ; associativity = λ { {_} {_} {_} {(X , Y) , Z} → Push-assoc X Y Z } + ; unitaryˡ = λ { {n} {_ , X} → Pull-i₂ {0} {n} [] X } + ; unitaryʳ = λ { {n} {X , _} → Pull-i₁ {n} {0} X [] } + } + ; braiding-compat = λ { {n} {m} {X , Y} → Pull-swap X Y } + } + +module Pull,++,[] = SymmetricMonoidalFunctor Pull,++,[] |
